cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353453 a(n) is the permanent of the n X n symmetric matrix M(n) that is defined as M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 64, 576, 7844, 63524, 882772, 11713408, 252996564, 5879980400, 184839020672, 5698866739200, 229815005974352, 9350598794677712, 480306381374466176, 23741710999960266176, 1446802666239931811472, 86153125248221968292928, 6197781268948296566634304
Offset: 0

Views

Author

Stefano Spezia, Apr 19 2022

Keywords

Examples

			a(8) = 7844:
    0,  1,  0,  0,  0,  0,  0,  0;
    1,  0,  1,  2,  0,  0,  0,  0;
    0,  1,  0,  1,  2,  3,  0,  0;
    0,  2,  1,  0,  1,  2,  3,  4;
    0,  0,  2,  1,  0,  1,  2,  3;
    0,  0,  3,  2,  1,  0,  1,  2;
    0,  0,  0,  3,  2,  1,  0,  1;
    0,  0,  0,  4,  3,  2,  1,  0.
		

Crossrefs

Cf. A000982 (number of zero matrix elements), A003983, A006918, A007590 (number of positive matrix elements), A049581, A051125, A173997, A350050, A352967, A353452 (determinant).

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[If[Min[i,j]
    				
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, if ((min(i,j) < max(i,j)) && (max(i,j) <= 2*min(i,j)), abs(i-j)))); \\ Michel Marcus, Apr 20 2022
    
  • Python
    from sympy import Matrix
    def A353453(n): return Matrix(n, n, lambda i, j: abs(i-j) if min(i,j)Chai Wah Wu, Aug 29 2023

Formula

Sum_{i=1..n+1-k} M[i,i+k] = A173997(n, k) with 1 <= k <= floor((n + 1)/2).
Sum_{i=1..n} Sum_{j=1..n} M[i,j] = 2*A006918(n-1).
Sum_{i=1..n} Sum_{j=1..n} M[i,j]^2 = A350050(n+1).