A353460 Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
1, 0, -1, 0, -1, 0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -3, 0, -3, 0, -2, 0, -4, 0, -1, 0, -4, 0, -5, 0, -5, 0, -3, 0, 1, 0, -6, 0, -4, 0, -7, 0, -7, 0, 0, 0, -8, 0, -4, 0, -5, 0, -9, 0, 3, 0, -6, 0, -10, 0, -10, 0, -1, 0, 2, 0, -11, 0, -7, 0, -12, 0, -12, 0, -3, 0, 1, 0, -13, 0, -8, 0, -14, 0, 4, 0, -9, 0, -15, 0, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A003602(n) = (1+(n>>valuation(n,2)))/2; A126760(n) = {n&&n\=3^valuation(n, 3)<
A126760 memoA349134 = Map(); A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v))); A353460(n) = sumdiv(n,d,A126760(d)*A349134(n/d));
Comments