A353493 The arithmetic derivative of n, reduced modulo 4.
0, 0, 1, 1, 0, 1, 1, 1, 0, 2, 3, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 2, 3, 3, 0, 1, 3, 1, 0, 2, 3, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 3, 1, 1, 0, 2, 1, 0, 0, 1, 1, 0, 0, 2, 3, 1, 0, 1, 1, 3, 0, 2, 1, 1, 0, 2, 3, 1, 0, 1, 3, 3, 0, 2, 3, 1, 0, 0, 3, 1, 0, 2, 1, 0, 0, 1, 3, 0, 0, 2, 1, 0, 0, 1, 1, 3, 0, 1, 3, 1, 0, 3
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
Formula
For all n, a(4*n) = 0 and a(4*n + 2) is either 1 or 3. [See comments in A235991]
For all n >= 2, a(n) = A010873[(A353496(n)*A353497(n)) + A353490(n)]. (This is essentially Reinhard Zumkeller's May 09 2011 recursive formula of A003415, when reduced modulo 4) - Antti Karttunen, Apr 26 2022