cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353526 The smallest prime not dividing n, reduced modulo 4.

Original entry on oeis.org

2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2}, While[Divisible[n, p], p = NextPrime[p]]; Mod[p, 4]]; Array[a, 100] (* Amiram Eldar, Jul 25 2022 *)
  • PARI
    A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
    A353526(n) = (A053669(n)%4);

Formula

a(n) = A010873(A053669(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} ((p mod 4)*(p-1)/(Product_{q prime, q <= p} q)) = 2.2324714414... . - Amiram Eldar, Jul 25 2022

A353487 a(n) = A276086(2*n) mod 4, where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3
Offset: 0

Views

Author

Antti Karttunen, Apr 24 2022

Keywords

Crossrefs

Even bisection of A353486. Odd bisection of A353516. Sequence A353517 shifted once left.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353487(n) = (A276086(2*n)%4);

Formula

a(n) = A353486(2*n) = A010873(A276086(2*n)).
a(n) = A353516(2*n + 1).
a(n) = A353517(1+n). [See comments in A353516 for a proof]
For n >= 1, a(n) = (A353517(n) * A353527(n)) mod 4.

A353517 The largest proper divisor of A276086(2*n) reduced modulo 4, where A276086(n) the primorial base exp-function.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 24 2022

Keywords

Crossrefs

Even bisection of A353516. Sequence A353487 shifted one term right.

Programs

Formula

a(n) = A353516(2*n) = A010873(A324895(2*n)).
For n >= 1, a(n) = (A353487(n) * A353527(n)) mod 4.
For n >= 1, a(n) = A353487(n-1). [See A353516 for a proof]
Showing 1-3 of 3 results.