cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353536 a(n) is the cardinality of the set S(n) obtained by the following process: Start with the set S(0) = {i}, where i is the imaginary unit. In step n, the set S(n) is the union of all Gaussian integers obtained by the m*(m+1)/2 sums and the m*(m+1)/2 products formed with the pairs of numbers in the Cartesian product S(n-1) x S(n-1) with m = card(S(n-1)).

Original entry on oeis.org

1, 2, 6, 34, 458, 41846, 169022181
Offset: 0

Views

Author

Hugo Pfoertner, Apr 26 2022

Keywords

Examples

			S(0) = {i}, a(0) = 1;
S(1) = {-1, 2*i}, a(1) = 2;
S(2) = {-4, -2, 1, -1+2*i, -2*i, 4*i}, a(2) = 6;
S(3) = {-16, -8, -6, -4, -3, -2, -1, 1, 2, 4, 8, 16, -8-4*i, -5+2*i, -4-2*i, -4+4*i, -3-4*i, -3+2*i, -2-2*i, -2+4*i, -1+2*i, -1+6*i, -16*i, -8*i, -4*i, -2*i, 2*i, 4*i, 8*i, 1-2*i, 1+4*i, 2-4*i, 4-8*i, 4+2*i}, a(3) = 34.
		

Crossrefs

Programs

  • PARI
    a353536(nmax) = {my(v=[I],m=#v); print1(m,", "); for(n=1,nmax, my(L=m*(m+1), w=vector(L), k=0); for(i=1,#v, for(j=i,#v, w[k++]=v[i]+v[j]; w[k++]=v[i]*v[j])); v=Set(w); m=#v; print1(m,", "))};
    a353536(5)