cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353551 a(n) = Sum_{k=1..n} tau(k^3), where tau is the number of divisors function A000005.

Original entry on oeis.org

0, 1, 5, 9, 16, 20, 36, 40, 50, 57, 73, 77, 105, 109, 125, 141, 154, 158, 186, 190, 218, 234, 250, 254, 294, 301, 317, 327, 355, 359, 423, 427, 443, 459, 475, 491, 540, 544, 560, 576, 616, 620, 684, 688, 716, 744, 760, 764, 816, 823, 851, 867, 895, 899, 939, 955, 995
Offset: 0

Views

Author

Karl-Heinz Hofmann, May 07 2022

Keywords

Examples

			  A048785(0) = 0
+ A048785(1) = 1
+ A048785(2) = 4
+ A048785(3) = 4
------------------
= A353551(3) = 9
		

Crossrefs

Partial sums of A048785.
Cf. A000005, A006218, A061503 (squares).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+numtheory[tau](n^3)) end:
    seq(a(n), n=0..100);  # Alois P. Heinz, May 08 2022
  • Mathematica
    Accumulate[Join[{0}, Table[DivisorSigma[0, k^3], {k, 1, 50}]]] (* Amiram Eldar, May 08 2022 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(k^3)); \\ Michel Marcus, May 08 2022
    
  • Python
    from sympy import divisor_count
    def A048785(n): return divisor_count(n**3)
    def A353551(n): return sum(A048785(n) for n in range(1, n))
    print([A353551(n) for n in range(1, 58)])
    
  • Python
    from math import prod
    from sympy import factorint
    def A353551(n): return sum(prod(3*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022

Formula

a(n) = Sum_{k=1..n} tau(k^3).
a(n) = a(n-1) + A048785(n) for n >= 1, a(0) = 0.