A353655 Number of terms in the Fibonacci-Lucas representation of n.
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 2, 3, 3, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 2, 3, 3, 3, 4, 3, 4, 5, 3, 4, 5, 2, 3, 3
Offset: 1
Keywords
Examples
n FL(n) 1 = 1 2 = 2 3 = 3 4 = 3 + 1 5 = 5 6 = 5 + 1 33 = 21 + 11 + 1 47 = 34 + 11 + 2 83 = 55 + 18 + 8 + 1 + 1
Programs
-
Mathematica
z = 120; fib = Map[Fibonacci, Range[2, 51]]; luc = Map[LucasL, Range[1, 50]]; t = Map[(n = #; fl = {}; f = 0; l = 0; While[IntegerQ[l], n = n - f - l; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; AppendTo[fl, {f, l}]]; {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]]; u = Take[Map[Last, t], z]; u1 = Map[Length, u] (* A353655 *) t = Map[(n = #; lf = {}; f = 0; l = 0; While[IntegerQ[f], n = n - l - f; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; AppendTo[lf, {l, f}]]; {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]]; v = Take[Map[Last, t], z]; v1 = Map[Length, v] (* A353656 *) u1 - v1 (* A353657 *) (* Peter J. C. Moses *)
Comments