A353657 a(n) = A353655(n)- A353656(n).
0, -1, 0, 1, -1, 0, 2, -1, 0, 1, 1, 0, -1, 0, 0, 0, -1, 2, 1, 0, -1, -1, 1, -1, -2, 1, 0, -2, 2, 1, 1, 0, 0, -1, -1, -1, 0, -1, -1, 0, -1, 1, 0, -1, -1, 0, 2, 1, 2, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, 1, 0, -2, 0, 0, -1, -2, 0, 1, 0, 0, 0, 1, -2, -1, 0, 2, 2
Offset: 1
Keywords
Examples
a(7) because A353655(u) = 3 and A353656(7) = 1, since the Fibonacci-Lucas representation of 7 is FL(7) = 5 + 1 + 1, and the Lucas-Fibonacci representation of 7 is LF(7) = 7.
Programs
-
Mathematica
z = 120; fib = Map[Fibonacci, Range[2, 51]]; luc = Map[LucasL, Range[1, 50]]; t = Map[(n = #; fl = {}; f = 0; l = 0; While[IntegerQ[l], n = n - f - l; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; AppendTo[fl, {f, l}]]; {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]]; u = Take[Map[Last, t], z]; u1 = Map[Length, u] (* A353655 *) t = Map[(n = #; lf = {}; f = 0; l = 0; While[IntegerQ[f], n = n - l - f; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; AppendTo[lf, {l, f}]]; {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]]; v = Take[Map[Last, t], z]; v1 = Map[Length, v] (* A353656 *) u1 - v1 (* A353657 *) (* Peter J. C. Moses *)
Comments