cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098988 Denominators in series expansion of log(Product_{m>=1} (1+q^m)).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 18, 19, 10, 21, 11, 23, 6, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 35, 36, 37, 19, 39, 20, 41, 21, 43, 11, 15, 23, 47, 12, 49, 50, 17, 26, 53, 27, 55, 7, 57, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35, 71, 72, 73, 37, 75, 19, 77, 39, 79, 40, 81, 41, 83, 21
Offset: 0

Views

Author

N. J. A. Sloane, Oct 24 2004

Keywords

Examples

			q + (1/2)*q^2 + (4/3)*q^3 + (1/4)*q^4 + (6/5)*q^5 + (2/3)*q^6 + (8/7)*q^7 + (1/8)*q^8 + (13/9)*q^9 + ...
		

Crossrefs

Cf. A098987 (numerators), A353688 (n / a(n)).

Programs

Formula

Denominators of Sum_{d|n} ((-1)^(d+1))/d. - Ridouane Oudra, Apr 28 2019
Denominators of coefficients in expansion of Sum_{k>=1} (-1)^(k+1) * x^k / (k * (1 - x^k)). - Ilya Gutkovskiy, Aug 04 2023

Extensions

Data section extended up to term a(84) by Antti Karttunen, May 06 2022

A353666 a(n) = gcd(n, A351546(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 28, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 2, 7, 4, 1, 2, 5, 4, 1, 1, 3, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Crossrefs

Differs from A353688 for the first time at n = 28, 30, 40, 60, 66, 84, 90, 102, 120, ...

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351546(n) = { my(f=factor(sigma(n)), u=A003961(n)); prod(k=1, #f~, f[k, 1]^((0!=(u%f[k, 1]))*f[k, 2])); };
    A353666(n) = gcd(n, A351546(n));

Formula

a(n) = gcd(n, A351546(n)).
a(n) = n / A353667(n) = A351546(n) / A353668(n).
Showing 1-2 of 2 results.