A353690 Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A353689 multiplied by A000330(k), and the first element of column k is in row A000217(k).
1, 5, 18, 5, 53, 25, 139, 90, 333, 265, 14, 748, 695, 70, 1592, 1665, 252, 3246, 3740, 742, 6379, 7960, 1946, 30, 12152, 16230, 4662, 150, 22524, 31895, 10472, 540, 40764, 60760, 22288, 1590, 72213, 112620, 45444, 4170, 125505, 203820, 89306, 9990, 55, 214378, 361065, 170128, 22440, 275
Offset: 1
Examples
Triangle begins: 1; 5; 18, 5; 53, 25; 139, 90; 333, 265, 14; 748, 695, 70; 1592, 1665, 252; 3246, 3740, 742; 6379, 7960, 1946, 30; 12152, 16230, 4662, 150; 22524, 31895, 10472, 540; 40764, 60760, 22288, 1590; 72213, 112620, 45444, 4170; 125505, 203820, 89306, 9990, 55; 214378, 361065, 170128, 22440, 275; 360473, 627525, 315336, 47760, 990; 597450, 1071890, 570696, 97380, 2915; 977196, 1802365, 1010982, 191370, 7645; 1578852, 2987250, 1757070, 364560, 18315; 2522157, 4885980, 3001292, 675720, 41140, 91; ... For n = 6 we have that A175254(6) is equal to [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 333 - 265 + 14 = 82, equaling A175254(6).
Comments