cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175254 a(n) = Sum_{k<=n} A000203(k)*(n-k+1), where A000203(m) is the sum of divisors of m.

Original entry on oeis.org

1, 5, 13, 28, 49, 82, 123, 179, 248, 335, 434, 561, 702, 867, 1056, 1276, 1514, 1791, 2088, 2427, 2798, 3205, 3636, 4127, 4649, 5213, 5817, 6477, 7167, 7929, 8723, 9580, 10485, 11444, 12451, 13549, 14685, 15881, 17133, 18475, 19859, 21339, 22863, 24471, 26157
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

Partial sums of A024916. - Omar E. Pol, Jul 03 2014
a(n) is also the volume of the stepped pyramid with n levels described in A245092. - Omar E. Pol, Aug 12 2015
Also the alternating row sums of A262612. - Omar E. Pol, Nov 23 2015
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and A000027.
Convolution of A340793 and the nonzero terms of A000217.
Antidiagonal sums of A319073.
Row sums of A274824. (End)
Row sums of A345272. - Omar E. Pol, Jun 14 2021
Also the alternating row sums of A353690. - Omar E. Pol, Jun 05 2022

Examples

			For n = 4: a(4) = sigma(1)*4 + sigma(2)*3 + sigma(3)*2 + sigma(4)*1 = 1*4 + 3*3 + 4*2 + 7*1 = 28.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[sigma](n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..45);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    Table[Sum[DivisorSigma[1, k] (n - k + 1), {k, n}], {n, 45}] (* Michael De Vlieger, Nov 24 2015 *)
  • PARI
    a(n) = sum(x=1, n, sigma(x)*(n-x+1)) \\ Michel Marcus, Mar 18 2013
    
  • Python
    from math import isqrt
    def A175254(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*(2*s+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+2*q+1)+3*(n+1)*(2*k+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

Conjecture: a(n) = Sum_{k=0..n} A006218(n-k). - R. J. Mathar, Oct 17 2012
a(n) = A000330(n) - A072481(n). - Omar E. Pol, Aug 12 2015
a(n) ~ Pi^2*n^3/36. - Vaclav Kotesovec, Sep 25 2016
G.f.: (1/(1 - x)^2)*Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
a(n) = Sum_{k=1..n} Sum_{i=1..k} k - (k mod i). - Wesley Ivan Hurt, Sep 13 2017
a(n) = A244050(n)/4. - Omar E. Pol, Jan 22 2021
a(n) = (n+1)*A024916(n) - A143128(n). - Vaclav Kotesovec, May 11 2022

Extensions

Corrected by Jaroslav Krizek, Mar 17 2010
More terms from Michel Marcus, Mar 18 2013

A353689 Convolution of A000716 and the positive integers.

Original entry on oeis.org

1, 5, 18, 53, 139, 333, 748, 1592, 3246, 6379, 12152, 22524, 40764, 72213, 125505, 214378, 360473, 597450, 977196, 1578852, 2522157, 3986658, 6239619, 9675801, 14874445, 22679693, 34314378, 51539173, 76875314, 113913453, 167741728, 245534597, 357361857, 517293186
Offset: 0

Views

Author

Omar E. Pol, May 08 2022

Keywords

Crossrefs

Partial sums of A210843.
Column 1 of A353690.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 11 2022
  • Mathematica
    nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 11 2022 *)
  • PARI
    lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ Michel Marcus, May 09 2022

Formula

From Vaclav Kotesovec, May 11 2022: (Start)
G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3.
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End)

A380231 Alternating row sums of triangle A237591.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 3, 4, 5, 4, 3, 6, 5, 4, 7, 8, 7, 8, 7, 10, 9, 8, 7, 10, 11, 10, 9, 12, 11, 14, 13, 14, 13, 12, 15, 16, 15, 14, 13, 16, 15, 18, 17, 16, 19, 18, 17, 20, 21, 22, 21, 20, 19, 22, 21, 24, 23, 22, 21, 24, 23, 22, 25, 26, 25, 28, 27, 26, 25, 28, 27, 32, 31, 30, 29, 28, 31, 30, 29
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2025

Keywords

Comments

Consider the symmetric Dyck path in the first quadrant of the square grid described in the n-th row of A237593. Let C = (A240542(n), A240542(n)) be the middle point of the Dyck path.
a(n) is also the coordinate on the x axis of the point (a(n),n) and also the coordinate on the y axis of the point (n,a(n)) such that the middle point of the line segment [(a(n),n),(n,a(n))] coincides with the middle point C of the symmetric Dyck path.
The three line segments [(a(n),n),C], [(n,a(n)),C] and [(n,n),C] have the same length.
For n > 2 the points (n,n), C and (a(n),n) are the vertices of a virtual isosceles right triangle.
For n > 2 the points (n,n), C and (n,a(n)) are the vertices of a virtual isosceles right triangle.
For n > 2 the points (a(n),n), (n,n) and (n,a(n)) are the vertices of a virtual isosceles right triangle.

Examples

			For n = 14 the 14th row of A237591 is [8, 3, 1, 2] hence the alternating row sum is 8 - 3 + 1 - 2 = 4, so a(14) = 4.
On the other hand the 14th row of A237593 is the 14th row of A237591 together with the 14 th row of A237591 in reverse order as follows: [8, 3, 1, 2, 2, 1, 3, 8].
Then with the terms of the 14th row of A237593 we can draw a Dyck path in the first quadrant of the square grid as shown below:
.
         (y axis)
          .
          .
          .    (4,14)              (14,14)
          ._ _ _ . _ _ _ _            .
          .               |
          .               |
          .               |_
          .                 |
          .                 |_ _
          .                C    |_ _ _
          .                           |
          .                           |
          .                           |
          .                           |
          .                           . (14,4)
          .                           |
          .                           |
          . . . . . . . . . . . . . . | . . . (x axis)
        (0,0)
.
In the example the point C is the point (9,9).
The three line segments [(4,14),(9,9)], [(14,4),(9,9)] and [(14,14),(9,9)] have the same length.
The points (14,14), (9,9) and (4,14) are the vertices of a virtual isosceles right triangle.
The points (14,14), (9,9) and (14,4) are the vertices of a virtual isosceles right triangle.
The points (4,14), (14,14) and (14,4) are the vertices of a virtual isosceles right triangle.
		

Crossrefs

Other alternating row sums (ARS) related to the Dyck paths of A237593 and the stepped pyramid described in A245092 are as follows:
ARS of A237593 give A000004.
ARS of A196020 give A000203.
ARS of A252117 give A000203.
ARS of A271343 give A000593.
ARS of A231347 give A001065.
ARS of A236112 give A004125.
ARS of A236104 give A024916.
ARS of A249120 give A024916.
ARS of A271344 give A033879.
ARS of A231345 give A033880.
ARS of A239313 give A048050.
ARS of A237048 give A067742.
ARS of A236106 give A074400.
ARS of A235794 give A120444.
ARS of A266537 give A146076.
ARS of A236540 give A153485.
ARS of A262612 give A175254.
ARS of A353690 give A175254.
ARS of A239446 give A235796.
ARS of A239662 give A239050.
ARS of A235791 give A240542.
ARS of A272026 give A272027.
ARS of A211343 give A336305.

Programs

  • PARI
    row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
    a(n) = my(orow = concat(row235791(n), 0)); vecsum(vector(#orow-1, i, (-1)^(i+1)*(orow[i] - orow[i+1]))); \\ Michel Marcus, Apr 13 2025

Formula

a(n) = 2*A240542(n) - n.
a(n) = n - 2*A322141(n).
a(n) = A240542(n) - A322141(n).
Showing 1-3 of 3 results.