cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A237271 Number of parts in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2014

Keywords

Comments

The diagram of the symmetry of sigma has been via A196020 --> A236104 --> A235791 --> A237591 --> A237593.
For more information see A237270.
a(n) is also the number of terraces at n-th level (starting from the top) of the stepped pyramid described in A245092. - Omar E. Pol, Apr 20 2016
a(n) is also the number of subparts in the first layer of the symmetric representation of sigma(n). For the definion of "subpart" see A279387. - Omar E. Pol, Dec 08 2016
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n. (See the second example). - Omar E. Pol, Dec 20 2016
From Hartmut F. W. Hoft, Dec 26 2016: (Start)
Using odd prime number 3, observe that the 1's in the 3^k-th row of the irregular triangle of A237048 are at index positions
3^0 < 2*3^0 < 3^1 < 2*3^1 < ... < 2*3^((k-1)/2) < 3^(k/2) < ...
the last being 2*3^((k-1)/2) when k is odd and 3^(k/2) when k is even. Since odd and even index positions alternate, each pair (3^i, 2*3^i) specifies one part in the symmetric representation with a center part present when k is even. A straightforward count establishes that the symmetric representation of 3^k, k>=0, has k+1 parts. Since this argument is valid for any odd prime, every positive integer occurs infinitely many times in the sequence. (End)
a(n) = number of runs of consecutive nonzero terms in row n of A262045. - N. J. A. Sloane, Jan 18 2021
Indices of odd terms give A071562. Indices of even terms give A071561. - Omar E. Pol, Feb 01 2021
a(n) is also the number of prisms in the three-dimensional version of the symmetric representation of k*sigma(n) where k is the height of the prisms, with k >= 1. - Omar E. Pol, Jul 01 2021
With a(1) = 0; a(n) is also the number of parts in the symmetric representation of A001065(n), the sum of aliquot parts of n. - Omar E. Pol, Aug 04 2021
The parity of this sequence is also the characteristic function of numbers that have middle divisors. - Omar E. Pol, Sep 30 2021
a(n) is also the number of polycubes in the 3D-version of the ziggurat of order n described in A347186. - Omar E. Pol, Jun 11 2024
Conjecture 1: a(n) is the number of odd divisors of n except the "e" odd divisors described in A005279. Thus a(n) is the length of the n-th row of A379288. - Omar E. Pol, Dec 21 2024
The conjecture 1 was checked up n = 10000 by Amiram Eldar. - Omar E. Pol, Dec 22 2024
The conjecture 1 is true. For a proof see A379288. - Hartmut F. W. Hoft, Jan 21 2025
From Omar E. Pol, Jul 31 2025: (Start)
Conjecture 2: a(n) is the number of 2-dense sublists of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
Example: for n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10], so a(10) = 2.
The conjecture 2 is essentially the same as the second conjecture in the Comments of A384149. See also Peter Munn's formula in A237270.
The indices where a(n) = 1 give A174973 (2-dense numbers). See the proof there. (End)
Conjecture 3: a(n) is the number of divisors p of n such that p is greater than twice the adjacent previous divisor of n. The divisors p give the n-th row of A379288. - Omar E. Pol, Aug 02 2025

Examples

			Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n   A000203  A237270    a(n)            Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|    _|_| | | | | |
5       6      3+3       2     |_ _ _|  _|  _ _|_| | | |
6      12      12        1     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|    _ _|
8      15      15        1     |_ _ _ _ _|  _|     |
9      13      5+3+5     3     |_ _ _ _ _| |      _|
10     18      9+9       2     |_ _ _ _ _ _|  _ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      28        1     |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n   A000203  A279391  A001227           Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|  _ _|_| | | | | |
5       6      3+3       2     |_ _ _| |_|  _ _|_| | | |
6      12      11+1      2     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|  _ _ _|
8      15      15        1     |_ _ _ _ _|  _|  _| |
9      13      5+3+5     3     |_ _ _ _ _| |  _|  _|
10     18      9+9       2     |_ _ _ _ _ _| |_ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      23+5      2     |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12
27: 1  1 1 0 0 1                           1's in A237048 for odd divisors
    1 27 3     9                           odd divisors represented
27: 1  0 1 1 1 0 0 1 1 1 0 1               blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1  1 1 0 0 1 0 0 1 0 0 0                          1's in A237048 f.o.d
    1 81 3    27     9                                odd div. represented
81: 1  0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1  blocks fp in A249223
(End)
		

Crossrefs

Programs

  • Mathematica
    a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
    Map[a237271, Range[90]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar,  Dec 22 2024 *)
  • PARI
    fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
    findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
    zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
    docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
    docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
    nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
    lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
    
  • Python
    from sympy import divisors
    def a(n: int) -> int:
        divs = list(divisors(n))
        d = [divs[i:i+2] for i in range(len(divs) - 1)]
        s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
        return s + 1
    print([a(n) for n in range(1, 80)])  # Peter Luschny, Aug 05 2025

Formula

a(n) = A001227(n) - A239657(n). - Omar E. Pol, Mar 23 2014
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
a(n) = A340846(n) - A340833(n) + 1 (Euler's formula). - Omar E. Pol, Feb 01 2021
a(n) = A000005(n) - A243982(n). - Omar E. Pol, Aug 02 2025

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
From Omar E. Pol, Dec 31 2016: (Start)
We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the pyramid see A237593 and all its related sequences. (End)

Examples

			Illustration of initial terms:
----------------------------------------------------------------------
a(n)                             Diagram
----------------------------------------------------------------------
0    _
1   |_|\ _
2    \ _| |\ _
3     |_ _| | |\ _
4      \ _ _|_| | |\ _
4       |_ _|  _| | | |\ _
6        \ _ _|  _| | | | |\ _
7         |_ _ _|  _|_| | | | |\ _
8          \ _ _ _|  _ _| | | | | |\ _
6           |_ _ _| |    _| | | | | | |\ _
10           \ _ _ _|  _|  _|_| | | | | | |\ _
12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
24                              |_ _ _ _ _ _ _ _| | |  _ _|
30                               \ _ _ _ _ _ _ _ _| | |
31                                |_ _ _ _ _ _ _ _ _| |
32                                 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level                              _ _
1                                _| | |_
2                              _|  _|_  |_
3                            _|   | | |   |_
4                          _|    _| | |_    |_
5                        _|     |  _|_  |     |_
6                      _|      _| | | | |_      |_
7                    _|       |   | | |   |       |_
8                  _|        _|  _| | |_  |_        |_
9                _|         |   |  _|_  |   |         |_
10             _|          _|   | | | | |   |_          |_
11           _|           |    _| | | | |_    |           |_
12         _|            _|   |   | | |   |   |_            |_
13       _|             |     |  _| | |_  |     |             |_
14     _|              _|    _| |  _|_  | |_    |_              |_
15   _|               |     |   | | | | |   |     |               |_
16  |                 |     |   | | | | |   |     |                 |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1      1   =      1      |_| | | | | | | | | | | | | | | |
2      3   =      3      |_ _|_| | | | | | | | | | | | | |
3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
16    31   =     31      |_ _ _ _ _ _ _ _ _|
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
    Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
    With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(2*n-1) + a(2n) = A224880(n).

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A244050 Partial sums of A243980.

Original entry on oeis.org

4, 20, 52, 112, 196, 328, 492, 716, 992, 1340, 1736, 2244, 2808, 3468, 4224, 5104, 6056, 7164, 8352, 9708, 11192, 12820, 14544, 16508, 18596, 20852, 23268, 25908, 28668, 31716, 34892, 38320, 41940, 45776, 49804, 54196, 58740, 63524, 68532, 73900
Offset: 1

Views

Author

Omar E. Pol, Jun 18 2014

Keywords

Comments

a(n) is also the volume of a special stepped pyramid with n levels related to the symmetric representation of sigma. Note that starting at the top of the pyramid, the total area of the horizontal regions at the n-th level is equal to A239050(n), and the total area of the vertical regions at the n-th level is equal to 8*n.
From Omar E. Pol, Sep 19 2015: (Start)
Also, consider that the area of the central square in the top of the pyramid is equal to 1, so the total area of the horizontal regions at the n-th level starting from the top is equal to sigma(n) = A000203(n), and the total area of the vertical regions at the n-th level is equal to 2*n.
Also note that this stepped pyramid can be constructed with four copies of the stepped pyramid described in A245092 back-to-back (one copy in every quadrant). (End)
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and the nonzero terms of A008586.
Convolution of A074400 and the nonzero terms of A005843.
Convolution of A340793 and the nonzero terms of A046092.
Convolution of A239050 and A000027.
(End)

Examples

			From _Omar E. Pol_, Aug 29 2015: (Start)
Illustration of the top view of the stepped pyramid with 16 levels. The pyramid is formed of 5104 unit cubes:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593 and A245092.
(End)
		

Crossrefs

Programs

  • Magma
    [4*(&+[(n-k+1)*DivisorSigma(1,k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Apr 07 2019
    
  • Mathematica
    a[n_] := 4 Sum[(n - k + 1) DivisorSigma[1, k], {k, n}]; Array[a, 40] (* Robert G. Wilson v, Aug 06 2018 *)
    Nest[Accumulate,4*DivisorSigma[1,Range[50]],2] (* Harvey P. Dale, Sep 07 2022 *)
  • PARI
    a(n) = 4*sum(k=1, n, sigma(k)*(n-k+1)); \\ Michel Marcus, Aug 07 2018
    
  • Python
    from math import isqrt
    def A244050(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1))<<1)//3 # Chai Wah Wu, Oct 22 2023
  • Sage
    [4*sum(sigma(k)*(n-k+1) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Apr 07 2019
    

Formula

a(n) = 4*A175254(n).

A143128 a(n) = Sum_{k=1..n} k*sigma(k).

Original entry on oeis.org

1, 7, 19, 47, 77, 149, 205, 325, 442, 622, 754, 1090, 1272, 1608, 1968, 2464, 2770, 3472, 3852, 4692, 5364, 6156, 6708, 8148, 8923, 10015, 11095, 12663, 13533, 15693, 16685, 18701, 20285, 22121, 23801, 27077, 28483, 30763, 32947, 36547
Offset: 1

Views

Author

Gary W. Adamson, Jul 26 2008

Keywords

Comments

Partial sums of A064987. - Omar E. Pol, Jul 04 2014
a(n) is also the volume after n-th step of the symmetric staircase described in A244580 (see also A237593). - Omar E. Pol, Jul 31 2018
In general, for j >= 1 and m >= 0, Sum_{k=1..n} k^m * sigma_j(k) ~ n^(j+m+1) * zeta(j+1) / (j+m+1). - Daniel Suteu, Nov 21 2018

Examples

			a(4) = 47 = (1 + 6 + 12 + 28) where A064987 = (1, 6, 12, 28, 30, ...).
a(4) = 47 = sum of row 4 terms of triangle A110662 = (15 + 14 + 11 + 7).
		

Crossrefs

Programs

  • Magma
    [(&+[k*DivisorSigma(1,k): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 21 2018
    
  • Maple
    with(numtheory): a:=proc(n) options operator, arrow: sum(k*sigma(k), k=1..n) end proc: seq(a(n),n=1..40); # Emeric Deutsch, Aug 12 2008
  • Mathematica
    Table[Sum[i*DivisorSigma[1, i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Jul 06 2014 *)
  • PARI
    a(n)=sum(k=1,n,k*sigma(k)) \\ Charles R Greathouse IV, Apr 27 2015
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    g(n) = n*(n+1)/2; \\ A000217
    a(n) = sum(k=1, sqrtint(n), k * f(n\k) + k^2 * g(n\k)) - f(sqrtint(n)) * g(sqrtint(n)); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    def A143128(n): return sum(k**2*(m:=n//k)*(m+1)>>1 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A143128(n): return ((-((s:=isqrt(n))*(s+1))**2*(2*s+1)>>1) + sum((q:=n//k)*(q+1)*k*(3*k+2*q+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
  • Sage
    [sum(k*sigma(k,1) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Nov 21 2018
    

Formula

Sum {k=1..n} k*sigma(k), where sigma(n) = A000203: (1, 3, 4, 7, 6, 12, ...) and n*sigma(n) = A064987: (1, 6, 12, 28, ...). Equals row sums of triangle A110662. - Emeric Deutsch, Aug 12 2008
a(n) ~ n^3 * Pi^2/18. - Charles R Greathouse IV, Jun 19 2012
G.f.: x*f'(x)/(1 - x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) = Sum_{k=1..n} k^2/2 * floor(n/k) * floor(1 + n/k). - Daniel Suteu, May 29 2018
a(n) = A256533(n) - A175254(n-1), n >= 2. - Omar E. Pol, Jul 31 2018
a(n) = Sum_{k=1..s} (k*A000330(floor(n/k)) + k^2*A000217(floor(n/k))) - A000330(s)*A000217(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020
a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i*k^2. - Wesley Ivan Hurt, Nov 26 2020

Extensions

Corrected and extended by Emeric Deutsch, Aug 12 2008

A340793 Sequence whose partial sums give A000203.

Original entry on oeis.org

1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2021

Keywords

Comments

Essentially a duplicate of A053222.
Convolved with the nonzero terms of A000217 gives A175254, the volume of the stepped pyramid described in A245092.
Convolved with the nonzero terms of A046092 gives A244050, the volume of the stepped pyramid described in A244050.
Convolved with A000027 gives A024916.
Convolved with A000041 gives A138879.
Convolved with A000070 gives the nonzero terms of A066186.
Convolved with the nonzero terms of A002088 gives A086733.
Convolved with A014153 gives A182738.
Convolved with A024916 gives A000385.
Convolved with A036469 gives the nonzero terms of A277029.
Convolved with A091360 gives A276432.
Convolved with A143128 gives the nonzero terms of A000441.
For the correspondence between divisors and partitions see A336811.

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021

Formula

a(n) = A053222(n-1) for n>1. - Michel Marcus, Jan 22 2021

A182738 Partial sums of A066186.

Original entry on oeis.org

1, 5, 14, 34, 69, 135, 240, 416, 686, 1106, 1722, 2646, 3959, 5849, 8489, 12185, 17234, 24164, 33474, 46014, 62646, 84690, 113555, 151355, 200305, 263641, 344911, 449015, 581400, 749520, 961622, 1228790, 1563509, 1982049
Offset: 1

Views

Author

Omar E. Pol, Jan 22 2011

Keywords

Comments

a(n) is also the volume of a three-dimensional version of the section model of partitions: the 3D illustrations in A135010 show boxes with face areas of 1 X 1, 2 X 2, 3 X 3, 4 X 5, 5 X 7 units along the m and p(m) axis, which is sequence A066186. Assuming that the boxes are 1 unit deep, the total volume of all boxes up to layer n is a(n). See the first two links.
From Omar E. Pol, Jan 20 2021: (Start)
a(n) is the sum of all parts of all partitions of all positive integers <= n.
Convolution of A000203 and A000070.
Convolution of A024916 and A000041.
Convolution of A175254 and A002865.
Convolution of A340793 and A014153.
Row sums of triangles A340527, A340531, A340579.
Consider a symmetric tower (a polycube) in which the terraces are the symmetric representation of sigma (n..1) respectively starting from the base (cf. A237270, A237593). The total area of the terraces equals A024916(n), the same as the area of the base.
The levels of the terraces starting from the base are the first n terms of A000070, that is A000070(0)..A000070(n-1), hence the differences between two successive levels give the partition numbers A000041, that is A000041(0)..A000041(n-1).
a(n) is the volume (or the total number of unit cubes) of the polycube.
That is due to the correspondence between divisors and partitions (cf. A336811).
The symmetric tower is a member of the family of the pyramid described in A245092.
The growth of the volume of the polycube represents every convolution mentioned above. (End)

Examples

			a(6) = 135 because the volume V(6) = p(1) + 2*p(2) + 3*p(3) + 4*p(4) + 5*p(5) + 6*p(6) = 1 + 2*2 + 3*3 + 4*5 + 5*7 + 6*11 = 1 + 4 + 9 + 20 + 35 + 66 = 135 where p(n) = A000041(n).
		

Crossrefs

Programs

  • Mathematica
    With[{no=35},Accumulate[PartitionsP[Range[no]]Range[no]]] (* Harvey P. Dale, Feb 02 2011 *)

Formula

a(n) = n*A000070(n) - A014153(n-1). - Vaclav Kotesovec, Jun 23 2015
a(n) ~ sqrt(n) * exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)) * (1 + (11*Pi/(24*sqrt(6)) - sqrt(6)/Pi)/sqrt(n) + (73*Pi^2/6912 - 3/16)/n). - Vaclav Kotesovec, Jun 23 2015, extended Nov 04 2016
G.f.: x*f'(x)/(1 - x), where f(x) = Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017

A259176 Triangle read by rows T(n,k) in which row n lists the odd-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 1, 2, 5, 1, 2, 5, 2, 2, 6, 1, 1, 2, 6, 1, 1, 3, 7, 2, 1, 2, 7, 2, 1, 3, 8, 1, 2, 3, 8, 2, 1, 1, 3, 9, 2, 1, 1, 3, 9, 2, 1, 1, 4, 10, 2, 1, 2, 3, 10, 2, 1, 2, 4, 11, 2, 2, 1, 4, 11, 3, 1, 1, 1, 4, 12, 2, 1, 1, 2, 4, 12, 2, 1, 1, 2, 5, 13, 3, 1, 1, 2, 4, 13, 3, 2, 1, 1, 5, 14, 2, 2, 1, 2, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
2, 1;
3, 1;
3, 2;
4, 1, 1;
4, 1, 2;
5, 1, 2;
5, 2, 2;
6, 1, 1, 2;
6, 1, 1, 3;
7, 2, 1, 2;
7, 2, 1, 3;
8, 1, 2, 3;
8, 2, 1, 1, 3;
9, 2, 1, 1, 3;
...
Illustration of initial terms (side view of the pyramid):
Row   _
1    |_|_
2    |_ _|_
3    |_ _|_|_
4    |_ _ _|_|_
5    |_ _ _|_ _|_
6    |_ _ _ _|_|_|_
7    |_ _ _ _|_|_ _|_
8    |_ _ _ _ _|_|_ _|_
9    |_ _ _ _ _|_ _|_ _|_
10   |_ _ _ _ _ _|_|_|_ _|_
11   |_ _ _ _ _ _|_|_|_ _ _|_
12   |_ _ _ _ _ _ _|_ _|_|_ _|_
13   |_ _ _ _ _ _ _|_ _|_|_ _ _|_
14   |_ _ _ _ _ _ _ _|_|_ _|_ _ _|_
15   |_ _ _ _ _ _ _ _|_ _|_|_|_ _ _|_
16   |_ _ _ _ _ _ _ _ _|_ _|_|_|_ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259177.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|_
3                             _|_ _| |_|
4                           _|_ _ _| |_|_
5                         _|_ _ _|  _|_ _|
6                       _|_ _ _ _| |_| |_|_
7                     _|_ _ _ _|   |_| |_ _|
8                   _|_ _ _ _ _|  _|_| |_ _|_
9                 _|_ _ _ _ _|   |_ _|_  |_ _|
10              _|_ _ _ _ _ _|   |_| |_| |_ _|_
11            _|_ _ _ _ _ _|    _|_| |_| |_ _ _|
12          _|_ _ _ _ _ _ _|   |_ _| |_|   |_ _|_
13        _|_ _ _ _ _ _ _|     |_ _| |_|_  |_ _ _|
14      _|_ _ _ _ _ _ _ _|    _|_|  _|_ _| |_ _ _|_
15    _|_ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
16   |_ _ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259177. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
For the mirror see A259177 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259176[n_, k_] := f[n, 2*k-1]
    TableForm[Table[a259176[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259176[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k - 1);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();)  \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k - 1)
    for n in range(1, 11): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021

A259177 Triangle read by rows T(n,k) in which row n lists the even-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 3, 1, 1, 4, 2, 1, 4, 2, 1, 5, 2, 2, 5, 2, 1, 1, 6, 3, 1, 1, 6, 2, 1, 2, 7, 3, 1, 2, 7, 3, 2, 1, 8, 3, 1, 1, 2, 8, 3, 1, 1, 2, 9, 4, 1, 1, 2, 9, 3, 2, 1, 2, 10, 4, 2, 1, 2, 10, 4, 1, 2, 2, 11, 4, 1, 1, 1, 3, 11, 4, 2, 1, 1, 2, 12, 5, 2, 1, 1, 2, 12, 4, 2, 1, 1, 3, 13, 5, 1, 1, 2, 3, 13, 5, 2, 1, 2, 2, 14
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
1, 2;
1, 3;
2, 3;
1, 1, 4;
2, 1, 4;
2, 1, 5;
2, 2, 5;
2, 1, 1, 6;
3, 1, 1, 6;
2, 1, 2, 7;
3, 1, 2, 7;
3, 2, 1, 8;
3, 1, 1, 2, 8;
3, 1, 1, 2, 9;
...
Illustration of initial terms (side view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|
3                             _|_|_ _|
4                           _|_|_ _ _|
5                         _|_ _|_ _ _|
6                       _|_|_|_ _ _ _|
7                     _|_ _|_|_ _ _ _|
8                   _|_ _|_|_ _ _ _ _|
9                 _|_ _|_ _|_ _ _ _ _|
10              _|_ _|_|_|_ _ _ _ _ _|
11            _|_ _ _|_|_|_ _ _ _ _ _|
12          _|_ _|_|_ _|_ _ _ _ _ _ _|
13        _|_ _ _|_|_ _|_ _ _ _ _ _ _|
14      _|_ _ _|_ _|_|_ _ _ _ _ _ _ _|
15    _|_ _ _|_|_|_ _|_ _ _ _ _ _ _ _|
16   |_ _ _|_|_|_ _|_ _ _ _ _ _ _ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259176.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                  |_|_
2                                 _|_ _|_
3                                |_| |_ _|_
4                               _|_| |_ _ _|_
5                              |_ _|_  |_ _ _|_
6                             _|_| |_| |_ _ _ _|_
7                            |_ _| |_|   |_ _ _ _|_
8                           _|_ _| |_|_  |_ _ _ _ _|_
9                          |_ _|  _|_ _|   |_ _ _ _ _|_
10                        _|_ _| |_| |_|   |_ _ _ _ _ _|_
11                       |_ _ _| |_| |_|_    |_ _ _ _ _ _|_
12                      _|_ _|   |_| |_ _|   |_ _ _ _ _ _ _|_
13                     |_ _ _|  _|_| |_ _|     |_ _ _ _ _ _ _|_
14                    _|_ _ _| |_ _|_  |_|_    |_ _ _ _ _ _ _ _|_
15                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _|_
16                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259176. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
Mirror of A259176 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259177[n_, k_] := f[n, 2*k]
    TableForm[Table[a259177[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259177[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();) \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k)
    for n in range(1, 27): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021
Showing 1-10 of 35 results. Next