cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A175254 a(n) = Sum_{k<=n} A000203(k)*(n-k+1), where A000203(m) is the sum of divisors of m.

Original entry on oeis.org

1, 5, 13, 28, 49, 82, 123, 179, 248, 335, 434, 561, 702, 867, 1056, 1276, 1514, 1791, 2088, 2427, 2798, 3205, 3636, 4127, 4649, 5213, 5817, 6477, 7167, 7929, 8723, 9580, 10485, 11444, 12451, 13549, 14685, 15881, 17133, 18475, 19859, 21339, 22863, 24471, 26157
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

Partial sums of A024916. - Omar E. Pol, Jul 03 2014
a(n) is also the volume of the stepped pyramid with n levels described in A245092. - Omar E. Pol, Aug 12 2015
Also the alternating row sums of A262612. - Omar E. Pol, Nov 23 2015
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and A000027.
Convolution of A340793 and the nonzero terms of A000217.
Antidiagonal sums of A319073.
Row sums of A274824. (End)
Row sums of A345272. - Omar E. Pol, Jun 14 2021
Also the alternating row sums of A353690. - Omar E. Pol, Jun 05 2022

Examples

			For n = 4: a(4) = sigma(1)*4 + sigma(2)*3 + sigma(3)*2 + sigma(4)*1 = 1*4 + 3*3 + 4*2 + 7*1 = 28.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[sigma](n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..45);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    Table[Sum[DivisorSigma[1, k] (n - k + 1), {k, n}], {n, 45}] (* Michael De Vlieger, Nov 24 2015 *)
  • PARI
    a(n) = sum(x=1, n, sigma(x)*(n-x+1)) \\ Michel Marcus, Mar 18 2013
    
  • Python
    from math import isqrt
    def A175254(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*(2*s+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+2*q+1)+3*(n+1)*(2*k+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

Conjecture: a(n) = Sum_{k=0..n} A006218(n-k). - R. J. Mathar, Oct 17 2012
a(n) = A000330(n) - A072481(n). - Omar E. Pol, Aug 12 2015
a(n) ~ Pi^2*n^3/36. - Vaclav Kotesovec, Sep 25 2016
G.f.: (1/(1 - x)^2)*Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
a(n) = Sum_{k=1..n} Sum_{i=1..k} k - (k mod i). - Wesley Ivan Hurt, Sep 13 2017
a(n) = A244050(n)/4. - Omar E. Pol, Jan 22 2021
a(n) = (n+1)*A024916(n) - A143128(n). - Vaclav Kotesovec, May 11 2022

Extensions

Corrected by Jaroslav Krizek, Mar 17 2010
More terms from Michel Marcus, Mar 18 2013

A244580 Square array read by antidiagonals related to the symmetric representation of sigma.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 4, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 6, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 6, 6, 6, 7, 8, 9, 10, 9, 8, 7, 8, 8, 7, 8, 9, 10, 11, 10, 9, 8, 8, 8, 8, 8, 9, 10, 11, 12, 11, 10, 9, 8, 9, 9, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2014

Keywords

Comments

The number of parts k in the square array is equal to A000203(k) hence the sum of parts k is equal to A064987(k).
The structure has a three-dimensional representation using polycubes. T(n,k) is the height of a column. The total area in the horizontal level z gives A000203(z).
The main diagonal gives A244367.

Examples

			.                         _ _ _ _ _ _ _ _ _
1,2,3,4,5,6,7,8,9...     |_| | | | | | | | |
2,2,3,4,5,6,7,8,9...     |_ _|_| | | | | | |
3,3,4,4,5,6,7,8,9...     |_ _|  _|_| | | | |
4,4,4,6,6,6,7,8,9...     |_ _ _|    _|_| | |
5,5,5,6,6,8,8,8,9...     |_ _ _|  _|  _ _|_|
6,6,6,6,8,8,9...         |_ _ _ _|  _| |
7,7,7,7,8,9,9...         |_ _ _ _| |_ _|
8,8,8,8,8...             |_ _ _ _ _|
9,9,9,9,9...             |_ _ _ _ _|
.
		

Crossrefs

A340793 Sequence whose partial sums give A000203.

Original entry on oeis.org

1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2021

Keywords

Comments

Essentially a duplicate of A053222.
Convolved with the nonzero terms of A000217 gives A175254, the volume of the stepped pyramid described in A245092.
Convolved with the nonzero terms of A046092 gives A244050, the volume of the stepped pyramid described in A244050.
Convolved with A000027 gives A024916.
Convolved with A000041 gives A138879.
Convolved with A000070 gives the nonzero terms of A066186.
Convolved with the nonzero terms of A002088 gives A086733.
Convolved with A014153 gives A182738.
Convolved with A024916 gives A000385.
Convolved with A036469 gives the nonzero terms of A277029.
Convolved with A091360 gives A276432.
Convolved with A143128 gives the nonzero terms of A000441.
For the correspondence between divisors and partitions see A336811.

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021

Formula

a(n) = A053222(n-1) for n>1. - Michel Marcus, Jan 22 2021

A000441 a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
Offset: 1

Views

Author

Keywords

Comments

Apart from initial zero this is the convolution of A340793 and A143128. - Omar E. Pol, Feb 16 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1);
    f:=e->[seq(S(n,e),n=1..30)];f(1); # N. J. A. Sloane, Jul 03 2015
  • Mathematica
    a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n - 6*n^2) * sigma(f) + 5*n * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
    
  • Python
    from sympy import divisor_sigma
    def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n,3))//24 # Chai Wah Wu, Jul 25 2024

Formula

Convolution of A000203 with A064987. - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 28 2018
a(n) = (n/24 - n^2/4)*sigma_1(n) + (5*n/24)*sigma_3(n). - Ridouane Oudra, Sep 17 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 2160. - Vaclav Kotesovec, May 09 2022

Extensions

More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014

A350123 a(n) = Sum_{k=1..n} k^2 * floor(n/k)^2.

Original entry on oeis.org

1, 8, 22, 57, 91, 185, 247, 402, 545, 775, 917, 1379, 1573, 1995, 2455, 3106, 3428, 4377, 4775, 5909, 6753, 7727, 8301, 10331, 11230, 12564, 13904, 15990, 16888, 19908, 20930, 23597, 25545, 27767, 29827, 34468, 35910, 38660, 41328, 46318, 48080, 53644, 55578
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[2*k*DivisorSigma[1, k] - DivisorSigma[2, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k)^2);
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (2*d-1)/d^2));
    
  • PARI
    a(n) = sum(k=1, n, 2*k*sigma(k)-sigma(k, 2));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
    
  • Python
    from math import isqrt
    def A350123(n): return (-(s:=isqrt(n))**3*(s+1)*((s<<1)+1)+sum((q:=n//k)*(6*k**2*q+((k<<1)-1)*(q+1)*((q<<1)+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (2*d - 1)/d^2 = Sum_{k=1..n} 2 * k * sigma(k) - sigma_2(k) = 2 * A143128(n) - A064602(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k * (1 + x^k)/(1 - x^k)^3.
a(n) ~ n^3 * (Pi^2/9 - zeta(3)/3). - Vaclav Kotesovec, Dec 16 2021

A256533 Product of n and the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 8, 24, 60, 105, 198, 287, 448, 621, 870, 1089, 1524, 1833, 2310, 2835, 3520, 4046, 4986, 5643, 6780, 7791, 8954, 9913, 11784, 13050, 14664, 16308, 18480, 20010, 22860, 24614, 27424, 29865, 32606, 35245, 39528, 42032, 45448, 48828, 53680, 56744, 62160, 65532, 70752, 75870, 80868, 84882, 92640, 97363, 104000
Offset: 1

Views

Author

Omar E. Pol, May 02 2015

Keywords

Comments

a(n) is also sum of the volumes (or the total number of unit cubes) from two complementary polycubes: the irregular staircase after n-th stage described in A244580, and the irregular stepped pyramid after (n-1)st stage described in A245092. Note that in both structures the horizontal area in the n-th level is also the symmetric representation of sigma(n). This comment is represented by the third formula.

Examples

			For n = 3; a(3) = 3 * 8 = 19 + 5 = 24.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*Apply[Plus,Flatten[Divisors[Range[n]]]]; Array[a,50] (* Ivan N. Ianakiev, May 03 2015 *)
    nxt[{n_,sd_,a_}]:=Module[{k=(n+1)*(DivisorSigma[1,n+1]+sd)},{n+1,sd+DivisorSigma[ 1,n+1],k}]; NestList[ nxt,{1,1,1},50][[;;,3]] (* Harvey P. Dale, Jun 12 2023 *)
  • PARI
    a(n) = n*sum(k=1, n, n\k*k); \\ Michel Marcus, Apr 29 2020
  • Python
    def A256533(n):
        s=0
        for k in range(1, n+1):
            s+=n%k
        return (n**3)-(s*n) # Indranil Ghosh, Feb 13 2017
    
  • Python
    from math import isqrt
    def A256533(n): return n*(-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1 # Chai Wah Wu, Oct 22 2023
    

Formula

a(n) = n*A024916(n).
a(n) = n^3 - A256532(n).
a(n) = A143128(n) + A175254(n-1), n > 1.
a(n) = A332264(n) + A175254(n). - Omar E. Pol, Apr 29 2020

A319086 a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.

Original entry on oeis.org

1, 13, 49, 161, 311, 743, 1135, 2095, 3148, 4948, 6400, 10432, 12798, 17502, 22902, 30838, 36040, 48676, 55896, 72696, 86808, 104232, 116928, 151488, 170863, 199255, 228415, 272319, 297549, 362349, 393101, 457613, 509885, 572309, 631109, 749045, 801067
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Comments

In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*sigma(k)); \\ Michel Marcus, Sep 12 2018
    
  • Python
    def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) ~ Pi^2 * n^4/24.
a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018

A356124 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j^k * binomial(floor(n/j)+1,2).

Original entry on oeis.org

1, 1, 4, 1, 5, 8, 1, 7, 11, 15, 1, 11, 19, 23, 21, 1, 19, 41, 47, 33, 33, 1, 35, 103, 125, 77, 57, 41, 1, 67, 281, 395, 255, 149, 71, 56, 1, 131, 799, 1373, 1025, 555, 205, 103, 69, 1, 259, 2321, 5027, 4503, 2537, 905, 325, 130, 87, 1, 515, 6823, 18965, 20657, 12867, 4945, 1585, 442, 170, 99
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1,     1, ...
   4,  5,   7,  11,   19,    35,    67, ...
   8, 11,  19,  41,  103,   281,   799, ...
  15, 23,  47, 125,  395,  1373,  5027, ...
  21, 33,  77, 255, 1025,  4503, 20657, ...
  33, 57, 149, 555, 2537, 12867, 68969, ...
		

Crossrefs

Column k=0..4 give A024916, A143127, A143128, A356125, A356126.
T(n,n) gives A356129.
T(n,n+1) gives A356128.

Programs

  • Mathematica
    T[n_, k_] := Sum[j^k * Binomial[Floor[n/j] + 1, 2], {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    T(n, k) = sum(j=1, n, j^k*binomial(n\j+1, 2));
    
  • PARI
    T(n, k) = sum(j=1, n, j*sigma(j, k-1));
    
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A356124_T(n,k): return ((s:=isqrt(n))*(s+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)*(q+1))+(w*(bernoulli(k+1,q+1)-bernoulli(k+1))<<1) for w in range(1,s+1)))//(k+1)>>1
    def A356124_gen(): # generator of terms
         return (A356124_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A356124_list = list(islice(A356124_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} j^k * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * sigma_{k-1}(j).

A256532 Product of n and the sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

Original entry on oeis.org

0, 0, 3, 4, 20, 18, 56, 64, 108, 130, 242, 204, 364, 434, 540, 576, 867, 846, 1216, 1220, 1470, 1694, 2254, 2040, 2575, 2912, 3375, 3472, 4379, 4140, 5177, 5344, 6072, 6698, 7630, 7128, 8621, 9424, 10491, 10320, 12177, 11928, 13975, 14432, 15255, 16468, 18941, 17952, 20286, 21000, 22899, 23608, 26765, 26568, 29095
Offset: 1

Views

Author

Omar E. Pol, May 03 2015

Keywords

Comments

a(n) is also the volume (or the total number of unit cubes) of a polycube which is a right prism whose base is the symmetric representation of A004125(n).
Note that the union of this right prism and the irregular staircase after n-th stage described in A244580 and the irregular stepped pyramid after (n-1)-th stage described in A245092, form a hexahedron (or cube) of side length n. This comment is represented by the third formula.

Examples

			a(5) = 20 because 5 * (0 + 1 + 2 + 1) = 5 * 4 = 20.
a(6) = 18 because 6 * (0 + 0 + 0 + 2 + 1) = 6 * 3 = 18.
a(7) = 56 because 7 * (0 + 1 + 1 + 3 + 2 + 1) = 7 * 8 = 56.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Mod[n,i],{i,2,n-1}],{n,55}] (* Ivan N. Ianakiev, May 04 2015 *)
  • PARI
    vector(50, n, n*sum(k=1, n, n % k)) \\ Michel Marcus, May 05 2015
    
  • Python
    def A256532(n):
        s=0
        for k in range(1,n+1):
            s+=n%k
        return s*n # Indranil Ghosh, Feb 13 2017
    
  • Python
    from math import isqrt
    def A256532(n): return n**3+n*((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = n * A004125(n).
a(n) = n^3 - A256533(n).
a(n) = n^3 - A143128(n) - A175254(n-1), n > 1.

A332264 Partial sums of A334136.

Original entry on oeis.org

0, 3, 11, 32, 56, 116, 164, 269, 373, 535, 655, 963, 1131, 1443, 1779, 2244, 2532, 3195, 3555, 4353, 4993, 5749, 6277, 7657, 8401, 9451, 10491, 12003, 12843, 14931, 15891, 17844, 19380, 21162, 22794, 25979, 27347, 29567, 31695, 35205, 36885, 40821, 42669, 46281, 49713, 52953, 55161, 60989, 63725, 68282
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2020

Keywords

Comments

a(n) is also the volume after n-th step of the symmetric staircase described in A244580 except the volume of the base level.

Examples

			For n = 4 the volume of the first four levels of the symmetric staircase described in A244580 is 47, since the structure contains 47 cubes. The volume of the base level is 15, since the base of the structure contains 15 cubes, so a(4) = 47 - 15 = 32.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (k-1)*sigma(k)); \\ Michel Marcus, Apr 19 2020
    
  • Python
    from math import isqrt
    def A332264(n): return (((s:=isqrt(n))**2*(s+1)*(6-(s+1)*((s<<1)+1))>>1)+sum((q:=n//k)*(k*(q+1)*(3*k+(q<<1)+1)-3*((k<<1)+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 25 2023

Formula

a(n) = A143128(n) - A024916(n).
a(n) = A256533(n) - A175254(n). - Omar E. Pol, Apr 29 2020
Showing 1-10 of 16 results. Next