A353698 Number of integer partitions of n whose product equals their length.
0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 1, 2, 5, 1, 4, 0, 3, 3, 2, 1, 4, 2, 3, 2, 2, 0, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 4, 0, 4, 3, 3, 1, 6, 2, 3, 4, 4, 2, 4, 1, 4, 2, 3, 1, 8, 2, 4, 2, 4, 2, 5, 2, 4, 2
Offset: 0
Keywords
Examples
The a(n) partitions for selected n (A..H = 10..17): n=9: n=21: n=27: n=33: --------------------------------------------------------------------------- 51111 B1111111111 E1111111111111 H1111111111111111 321111 72111111111111 921111111111111111 B211111111111111111111 531111111111111 54111111111111111111 831111111111111111111111 4221111111111111 5511111111111111111111111 333111111111111111111111111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@#==Length[#]&]],{n,0,30}]
-
PARI
a(r,m=r,p=1,k=0) = {(p==k+r) + sum(m=2, min(m, (k+r)\p), self()(r-m, min(m,r-m), p*m, k+1))} \\ Andrew Howroyd, Jan 02 2023
Extensions
Terms a(61) and beyond from Andrew Howroyd, Jan 02 2023