cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353715 a(n) = b(n)+b(n+1), where b is A353709.

Original entry on oeis.org

1, 3, 6, 12, 11, 19, 28, 44, 49, 23, 46, 104, 69, 15, 58, 113, 79, 142, 161, 51, 86, 77, 43, 54, 92, 107, 167, 156, 90, 102, 61, 155, 226, 109, 157, 242, 354, 277, 63, 234, 449, 279, 126, 233, 387, 286, 125, 481, 410, 63, 357, 456, 143, 87, 240, 171, 95, 372, 419, 207, 348, 433, 231, 334, 313, 183, 462, 840, 531, 63, 492, 961, 543, 254, 992, 783, 127
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2022

Keywords

Comments

Created in an attempt to show that every number appears in A353709. For example, if one could show that the present sequence had a subsequence which was divisible by ever-increasing powers of 2, the desired result would follow. See A353724, A353725, A353726, A353727 for more about this topic.

Crossrefs

Programs

  • Maple
    g:= proc() false end: t:= 2:
    b:= proc(n) option remember; global t; local k; if n<2 then n
          else for k from t while g(k) or Bits[And](k, b(n-2))>0
          or Bits[And](k, b(n-1))>0 do od; g(k):=true;
          while g(t) do t:=t+1 od; k fi
        end:
    a:= n-> b(n)+b(n+1):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 09 2022
  • Mathematica
    g[_] = False ; t = 2;
    b[n_] := b[n] = Module[{k}, If[n < 2, n,
       For[k = t, g[k] || BitAnd[k, b[n-2]] > 0 ||
       BitAnd[k, b[n-1]] > 0, k++]; g[k] = True;
       While[g[t], t = t+1]; k]];
    a[n_] := b[n] + b[n+1];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 07 2022, after Alois P. Heinz *)
  • Python
    from itertools import count, islice
    def A353715_gen(): # generator of terms
        s, a, b, c, ab = {0,1}, 0, 1, 2, 1
        yield 1
        while True:
            for n in count(c):
                if not (n & ab or n in s):
                    yield b+n
                    a, b = b, n
                    ab = a|b
                    s.add(n)
                    while c in s:
                        c += 1
                    break
    A353715_list = list(islice(A353715_gen(),30)) # Chai Wah Wu, May 11 2022

A353725 Records in A353724.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 16, 17, 18
Offset: 1

Views

Author

N. J. A. Sloane, May 11 2022

Keywords

Comments

Motivated by a comment in A353715.

Examples

			Table from _Walter Trump_, May 11 2022, showing initial terms of A353725 (column 1) and A353726 (column 3). The central column shows the corresponding entry of A353715 written in base 2.
   0                                1         0
   1                              110         2
   2                             1100         3
   3                          1101000        11
   4                         11110000        54
   5                       1111100000        74
   6                      11101000000        88
   7                     110110000000       183
  12                11111000000000000      3913
  13          10011111110000000000000    124845
  16      111111111110000000000000000   2469947
  17     1111111101100000000000000000   4005550
  18  1011111111111000000000000000000  19917707
		

Crossrefs

Extensions

a(10)-a(13) from Walter Trump, May 11 2022

A353724 a(n) = exponent of highest power of 2 that divides A353715(n).

Original entry on oeis.org

0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 1, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 1, 3, 0, 0, 2, 0, 0, 1, 5, 0, 0, 4, 0, 0, 2, 1, 0, 0, 3, 0, 0, 3, 6, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 11 2022

Keywords

Examples

			A353715(3) = 12 = 2^2*3, so a(3) = 2. A353715(11) = 104 = 2^3*13, so a(11) = 3.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def A353724_gen(): # generator of terms
        s, a, b, c, ab = {0,1}, 0, 1, 2, 1
        yield 0
        while True:
            for n in count(c):
                if not (n & ab or n in s):
                    yield len(t := bin(b+n))-len(t.rstrip('0'))
                    a, b = b, n
                    ab = a|b
                    s.add(n)
                    while c in s:
                        c += 1
                    break
    A353724_list = list(islice(A353724_gen(),30)) # Chai Wah Wu, May 11 2022

A353727 Index in A353715 of the first term divisible by 2^n and no higher power of 2, or -1 if no such term exists.

Original entry on oeis.org

0, 2, 3, 11, 54, 74, 88, 183, 20334, 30938, 21247, 90575, 3913, 124845, 2643790, 5828721, 2469947, 4005550, 19917707
Offset: 0

Views

Author

Walter Trump, May 11 2022

Keywords

Examples

			Table showing initial values of n (column 1) and a(n) (column 3).
The central column shows the corresponding entry of A353715 written in base 2.
The entries in column 2 end in exactly n zeros.
   n                    A353715(a(n))       a(n)
   0                                1         0
   1                              110         2
   2                             1100         3
   3                          1101000        11
   4                         11110000        54
   5                       1111100000        74
   6                      11101000000        88
   7                     110110000000       183
   8              1111110101100000000     20334
   9             10111110101000000000     30938
  10              1111111110000000000     21247
  11           1001111111100000000000     90575
  12                11111000000000000      3913
  13          10011111110000000000000    124845
  14      111110111110100000000000000   2643790
  15    10011111111111000000000000000   5828721
  16      111111111110000000000000000   2469947
  17     1111111101100000000000000000   4005550
  18  1011111111111000000000000000000  19917707
		

Crossrefs

Showing 1-4 of 4 results.