A353784 a(n) = sigma(n) / LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 4, 3, 2, 1, 1, 1, 2, 3, 1, 4, 1, 1, 1, 3, 1, 1, 1, 1, 2, 7, 1, 1, 6, 1, 4, 3, 1, 2, 1, 1, 1, 1, 2, 12, 1, 1, 4, 6, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 3, 1, 4, 6, 1, 2, 3, 1, 3, 2, 1, 4, 3, 2, 1, 1, 3, 1, 1, 1, 6, 1, 1, 8
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
Array[DivisorSigma[1, #]/(LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]]) &, 105] (* Michael De Vlieger, May 08 2022 *)
-
PARI
A353784(n) = { my(f=factor(n)~); (sigma(n) / lcm(vector(#f, i, sigma(f[1, i]^f[2, i])))); };