cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353786 Number of distinct nonprime numbers of the form 2^k - 1 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Examples

			Divisors of 255 are [1, 3, 5, 15, 17, 51, 85, 255], of these of the form 2^k - 1 (A000225) are 1, 3, 15 and 255, but only three of them are counted (because 3 is a prime), therefore a(255) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, !PrimeQ[#] && # + 1 == 2^IntegerExponent[# + 1, 2] &]; Array[a, 120] (* Amiram Eldar, May 12 2022 *)
  • PARI
    A353786(n) = { my(m=1,s=0); while(m<=n, s += (!isprime(m))*!(n%m); m += (m+1)); (s); };

Formula

a(n) = A154402(n) - A147645(n).
a(n) = a(2*n) = a(A000265(n)).
For all primes p, a(p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A135972(n) = A065442 - A173898 = 1.0902409734... . - Amiram Eldar, Dec 31 2023