cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353806 a(n) = A353802(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 16, 1, 1, 1, 1, 1, 1, 1, 112, 1, 1, 49, 13, 45, 1, 1, 1, 7, 16, 1, 5, 1, 1, 1, 16, 1, 1, 1, 1, 7, 64, 1, 1, 112, 1, 49, 16, 1, 7, 1, 1, 1, 1, 9, 784, 1, 1, 5, 720, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 16, 1, 5, 117, 1, 7, 16, 1, 16, 45, 1, 147, 16, 7
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A353802(n) / A051027(n).

Crossrefs

Cf. A000203, A051027, A353802, A353803, A353804, A353805 (denominators).
Cf. A336547 (positions of 1's), A336548 (positions of terms > 1), see also A353807.
Cf. also A353755, A353756.

Programs

  • PARI
    A051027(n) = sigma(sigma(n));
    A353806(n) = { my(f = factor(n), u=prod(k=1, #f~, A051027(f[k, 1]^f[k, 2]))); (u / gcd(A051027(n), u)); };

Formula

a(n) = A353802(n) / A353804(n) = A353802(n) / gcd(A051027(n), A353802(n)).