cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353892 Expansion of e.g.f. exp( -(x * log(1-x))^3 / 36 ).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 20, 210, 1960, 18900, 194880, 2166780, 26172080, 342599400, 4835694864, 73208215080, 1183011385920, 20318534134080, 369549843420384, 7094851788127680, 143377043010268800, 3042204544957939200, 67621161484919380800, 1571319471977711258880
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(x*log(1-x))^3/36)))
    
  • PARI
    a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*k!*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/6)} (3*k)! * |Stirling1(n-3*k,3*k)|/(36^k * k! * (n-3*k)!).

A353894 Expansion of e.g.f. exp( (x * (exp(x) - 1))^2 / 4 ).

Original entry on oeis.org

1, 0, 0, 0, 6, 30, 105, 315, 2128, 24948, 251415, 2093025, 16437036, 148728294, 1693067467, 21459867975, 270217289280, 3338860150488, 42428729660751, 581966068060485, 8654787480759700, 135253842794286930, 2163416823356628147, 35313421249845594075
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(exp(x)-1))^2/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (2*k)!*stirling(n-2*k, 2*k, 2)/(4^k*k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (2*k)! * Stirling2(n-2*k,2*k)/(4^k * k! * (n-2*k)!).

A353896 Expansion of e.g.f. exp( (x * (exp(x) - 1))^4 / 576 ).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 13650, 115500, 841995, 5555550, 34139105, 198948750, 1144463320, 8171563400, 112204064700, 2364061354200, 49912312090845, 951208121086650, 16403948060775275, 260328078068154250, 3860274855288458376, 54182965918066177500
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(exp(x)-1))^4/576)))
    
  • PARI
    a(n) = n!*sum(k=0, n\8, (4*k)!*stirling(n-4*k, 4*k, 2)/(576^k*k!*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/8)} (4*k)! * Stirling2(n-4*k,4*k)/(576^k * k! * (n-4*k)!).
Showing 1-3 of 3 results.