A353914
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arcsinh(x).
Original entry on oeis.org
1, -2, -1, -20, -11, 46, -547, -29840, -27351, 232818, -3258663, -29911848, -390445563, 4450393260, -84140635815, -12153983817984, -18431412645519, 286688710444842, -6436900596281679, -169286474970429624, -2208721087854287811, 41892263643715799796, -1149793471388581053219
Offset: 1
-
nn = 23; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353915
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arctan(x).
Original entry on oeis.org
1, -2, -2, -16, -16, 16, -832, -22016, -27648, 173568, -4228608, -57965568, -398991360, 2554896384, -98606039040, -7568860053504, -17762113880064, 200091412463616, -7331825098948608, -258326401420099584, -2009778629489197056, 25949098553870647296, -1278044473427380666368
Offset: 1
-
nn = 23; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcTan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A354115
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + arcsin(x).
Original entry on oeis.org
1, -2, 1, -4, 29, -244, 1583, -10368, 124553, -2029776, 20127867, -180343296, 3978820221, -75977108544, 914656587063, -15574206480384, 370244721585681, -8082505243732224, 162968423791332339, -3082360882836013056, 82014901819948738629, -2501342802748968883200, 58311771938510122952559
Offset: 1
-
nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + ArcSin[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A353972
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arcsin(x).
Original entry on oeis.org
1, 0, 1, -4, 29, -124, 1583, -17088, 124553, -1152816, 20127867, -262838016, 3978820221, -48595514304, 914656587063, -24441484099584, 370244721585681, -5884988565575424, 162968423791332339, -3855257807841017856, 82014901819948738629, -1934570487417807744000, 58311771938510122952559
Offset: 1
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = Mod[n, 2] (n - 2)!!/(n (n - 1)!!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]
A353928
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arctanh(x).
Original entry on oeis.org
1, -2, 2, -32, 64, -464, 3968, -92672, 414720, -5486592, 68247552, -869895168, 15949529088, -299609505792, 5012834549760, -177156842717184, 2119956936523776, -50954009373573120, 1123874181449515008, -29311973327486582784, 730049769522063212544, -22005690087484302557184
Offset: 1
-
nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcTanh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
Showing 1-5 of 5 results.