cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A353913 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arcsin(x).

Original entry on oeis.org

1, -2, 1, -28, 29, -194, 1583, -61328, 144153, -1697262, 20127867, -191762088, 3978820221, -66586416948, 1057400360235, -58260102945024, 370244721585681, -7992573879248406, 162968423791332339, -3399970067764816824, 88052648301403014789, -2360852841450177138924
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353914 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arcsinh(x).

Original entry on oeis.org

1, -2, -1, -20, -11, 46, -547, -29840, -27351, 232818, -3258663, -29911848, -390445563, 4450393260, -84140635815, -12153983817984, -18431412645519, 286688710444842, -6436900596281679, -169286474970429624, -2208721087854287811, 41892263643715799796, -1149793471388581053219
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 23; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A354117 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + arctan(x).

Original entry on oeis.org

1, -2, -2, 8, -16, 176, -832, 384, 8192, 447744, -4228608, -15860736, -398991360, 10938421248, 44581613568, -29064658944, -17762113880064, -18092698632192, -7331825098948608, -64037289416196096, 3154526750647517184, 91791873021766533120, -1278044473427380666368
Offset: 1

Views

Author

Ilya Gutkovskiy, May 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + ArcTan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: Sum_{k>=1} mu(k) * log(1 + arctan(x^k)) / k.

A354275 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arctan(x).

Original entry on oeis.org

1, 0, -2, 8, -16, -64, -832, 13824, 8192, -36096, -4228608, -58438656, -398991360, -3452915712, 44581613568, 7144463302656, -17762113880064, 126440605483008, -7331825098948608, -88237584523984896, 3154526750647517184, -27279757707305287680, -1278044473427380666368
Offset: 1

Views

Author

Ilya Gutkovskiy, May 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = {1, 0, -1, 0}[[Mod[n, 4, 1]]]/n - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]

Formula

E.g.f.: Sum_{k>=1} A067856(k) * log(1 + arctan(x^k)) / k.

A353928 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arctanh(x).

Original entry on oeis.org

1, -2, 2, -32, 64, -464, 3968, -92672, 414720, -5486592, 68247552, -869895168, 15949529088, -299609505792, 5012834549760, -177156842717184, 2119956936523776, -50954009373573120, 1123874181449515008, -29311973327486582784, 730049769522063212544, -22005690087484302557184
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcTanh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
Showing 1-5 of 5 results.