A353938 Smallest b > 1 such that b^(p-1) == 1 (mod p^5) for p = prime(n).
33, 242, 1068, 1353, 27216, 109193, 15541, 133140, 495081, 1115402, 2754849, 1353359, 649828, 3228564, 2359835, 4694824, 7044514, 28538377, 1111415, 77588426, 16178110, 2553319, 9571390, 158485540, 18664438, 146773512, 45639527, 448251412, 48834112, 141076650
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^5] != 1, b++]; b]; Array[a, 12] (* Amiram Eldar, May 12 2022 *)
-
PARI
a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^5)^(p-1)==1, return(b)))
-
Python
from sympy import prime from sympy.ntheory.residue_ntheory import nthroot_mod def A353938(n): return 2**5+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**5,True)[1]) # Chai Wah Wu, May 17 2022