A353941 Smallest b > 1 such that b^(p-1) == 1 (mod p^8) for p = prime(n).
257, 6560, 110443, 2387947, 9236508, 6826318, 112184244, 674273372, 571782680, 8827420195, 46142113101, 85760131222, 287369842623, 120773832179, 83209719751, 1684374218587, 6358345589299, 6305601215112, 5800992744105, 33960226045484, 56924554232879, 11856046381401
Offset: 1
Keywords
Crossrefs
Programs
-
PARI
a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^8)^(p-1)==1, return(b)))
-
Python
from sympy import prime from sympy.ntheory.residue_ntheory import nthroot_mod def A353941(n): return 2**8+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**8,True)[1]) # Chai Wah Wu, May 17 2022
Extensions
a(7)-a(8) from Amiram Eldar, May 12 2022
More terms from Jinyuan Wang, May 17 2022