cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353996 Rooted simple digraphs on n unlabeled vertices.

Original entry on oeis.org

1, 4, 36, 752, 45960, 9133760, 6154473664, 14334221970688, 117222686206799936, 3412369204476033220608, 357745172369222114451432448, 136400229481294592916607770361856, 190697841181900458854914389940360337408
Offset: 1

Views

Author

Brendan McKay, May 13 2022

Keywords

Comments

Loops and parallel edges are not permitted.
There are four ways that a vertex other than the root can be joined to the root: only towards, only away, both, neither. Remove the root and color the remaining vertices by four colors corresponding to how they were joined to the root. This gives a bijection with 4-colored digraphs on n-1 vertices, which is A329874(n-1,4).

Crossrefs

Cf. A329874.

Programs

  • Maple
    with(Iterator):
    RootedDig := proc(n)
            local i,j,ptn,ans,a,orb2,orb4,hasptn,nextptn;
       (hasptn,nextptn) := ModuleIterator(PartitionPartCount(n-1));
       ans := 0;
       while hasptn() do
          ptn := nextptn();
          a := 1 / mul(j^ptn[j]*ptn[j]!,j=1..n-1);
          orb2 := add(ptn[j],j=2..n-1,2);
          orb4 := add(ptn[j]*j/2,j=2..n-1,2)
             + add(ptn[j]*(j+1)/2,j=1..n-1,2)
             + add(ptn[j]*(ptn[j]-1)*j/2,j=1..n-1)
             + add(add(ptn[i]*ptn[j]*igcd(i,j),i=1..j-1),j=2..n-1);
          ans := ans + a*2^orb2*4^orb4;
       end do;
       ans;
    end proc;

Formula

a(n) = A329874(n-1,4).