A329874
Array read by antidiagonals: A(n,k) = number of digraphs on n unlabeled nodes, arbitrarily colored with k given colors (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 3, 3, 10, 16, 4, 21, 104, 218, 5, 36, 328, 3044, 9608, 6, 55, 752, 14814, 291968, 1540944, 7, 78, 1440, 45960, 2183400, 96928992, 882033440, 8, 105, 2456, 111010, 9133760, 1098209328, 112282908928, 1793359192848
Offset: 1
First six rows and columns:
1 2 3 4 5 6
3 10 21 36 55 78
16 104 328 752 1440 2456
218 3044 14814 45960 111010 228588
9608 291968 2183400 9133760 27755016 68869824
1540944 96928992 1098209328 6154473664 23441457680 69924880288
...
n=4, k=3 with A329546:
A(4,3) = 3*218 + 3*2608 + 6336 = 14814.
Cf.
A000273 digraphs with one color,
A000595 binary relations,
A329546 digraphs with exactly k colors,
A328773 digraphs with a given color scheme.
-
\\ here C(p) computes A328773 sequence value for given partition.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
\\ here mulp(v) computes the multiplicity of the given partition. (see A072811)
mulp(v) = {my(p=(#v)!, k=1); for(i=2, #v, k=if(v[i]==v[i-1], k+1, p/=k!; 1)); p/k!}
wC(p)=mulp(p)*C(p)
A329546(n)={[vecsum(apply(wC, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]}
Row(n)=vector(6, k, binomial(k)[2..min(k,n)+1]*A329546(n)[1..min(k,n)]~)
{ for(n=0, 6, print(Row(n))) }
A383617
Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, k of which are picked out, 0 <= k <= n.
Original entry on oeis.org
1, 2, 2, 10, 16, 10, 104, 272, 272, 104, 3044, 11456, 16960, 11456, 3044, 291968, 1432608, 2842304, 2842304, 1432608, 291968, 96928992, 578431232, 1441700480, 1920352256, 1441700480, 578431232, 96928992, 112282908928, 784780122880, 2351993457920, 3918054495616, 3918054495616, 2351993457920, 784780122880, 112282908928
Offset: 0
Triangle starts:
1;
2, 2;
10, 16, 10;
104, 272, 272, 104;
3044, 11456, 16960, 11456, 3044;
291968, 1432608, 2842304, 2842304, 1432608, 291968;
96928992, 578431232, 1441700480, 1920352256, 1441700480, ...
112282908928, 784780122880, 2351993457920, 3918054495616, 3918054495616, ...
...
Example n=2, k=1: The both objects are differentiated. As a consequence all binary relations on two different objects have to be counted: These are the subsets of the cross product of the objects set with itself. This contains four pairs, so the number of subsets is 2^4 = 16.
A384105
Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 3, 4, 3, 16, 36, 36, 16, 218, 752, 1104, 752, 218, 9608, 45960, 90416, 90416, 45960, 9608, 1540944, 9133760, 22692704, 30194176, 22692704, 9133760, 1540944, 882033440, 6154473664, 18425858880, 30679088480, 30679088480, 18425858880, 6154473664, 882033440
Offset: 0
Triangle starts:
1
1, 1
3, 4, 3
16, 36, 36, 16
218, 752, 1104, 752, 218
9608, 45960, 90416, 90416, 45960, ...
1540944, 9133760, 22692704, 30194176, 22692704, ...
882033440, 6154473664, 18425858880, 30679088480, 30679088480, ...
1793359192848, 14334221970688, 50138592081152, 100240050239744, 125284653092864, ...
...
Showing 1-3 of 3 results.
Comments