A354009 Irregular triangle read by rows in which row n lists the partitions of n into an odd number of equal parts, in nonincreasing order.
1, 2, 3, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 2, 2, 2, 7, 1, 1, 1, 1, 1, 1, 1, 8, 9, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 2, 2, 2, 2, 2, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 4, 4, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 2, 2, 2, 2, 2, 2, 2, 15, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1]; [2]; [3], [1,1,1]; [4]; [5], [1,1,1,1,1]; [6], [2,2,2]; [7], [1,1,1,1,1,1,1]; [8]; [9], [3,3,3], [1,1,1,1,1,1,1,1,1]; [10], [2,2,2,2,2]; [11], [1,1,1,1,1,1,1,1,1,1,1]; [12], [4,4,4]; [13], [1,1,1,1,1,1,1,1,1,1,1,1,1]; [14], [2,2,2,2,2,2,2]; [15], [5,5,5], [3,3,3,3,3], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; [16]; ... For n = 10, in row 10 there are two partitions, equaling the number of odd divisors of 10, they are [1, 5], and equaling the number of partitions of 10 into consecutive parts, they are [10], [4, 3, 2, 1], and equaling the number of subparts in the symmetric representation of sigma(10), they are [9, 9]. The sum of row 10 is [10] + [2 + 2 + 2 + 2 + 2] = 20 equaling the sum of all parts of all partitions of 10 into consecutive parts, that is [10] + [4 + 3 + 2 + 1] = 20. The length of row 10 is equal to 6 equaling the sum of the odd divisors of 10, that is 1 + 5 = 6.
Crossrefs
Programs
-
Mathematica
Table[ConstantArray[n/#, #] & /@ Select[Divisors[n], OddQ], {n, 15}] // Flatten (* Michael De Vlieger, Jul 15 2022 *)
-
PARI
row(n) = my(v=[]); fordiv(n, d, if ((n/d)%2, v = concat(v, vector(n/d, k, d)))); Vecrev(v); \\ Michel Marcus, Jul 16 2022
Comments