A354080 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0)=1, a(1)=4, a(2)=5.
1, 4, 5, 10, 19, 34, 63, 116, 213, 392, 721, 1326, 2439, 4486, 8251, 15176, 27913, 51340, 94429, 173682, 319451, 587562, 1080695, 1987708, 3655965, 6724368, 12368041, 22748374, 41840783, 76957198, 141546355
Offset: 0
Examples
Here is one of the a(9)=392 tilings, this one with four squares, two dominoes, and one tromino. _ |_|_______________ | |_|_____|_|_|___| |_|
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 1, 1}, {1, 4, 5}, 50] (* Paolo Xausa, May 27 2024 *)
Formula
a(n) = T(n+2) + 3*T(n+1), for T(n) = A000073(n) the tribonacci numbers.
a(n) = L(n+1) + F(n) + Sum_{i=1.. n-2} F(i)*a(n-2-i), for F(n) = A000045(n) the Fibonacci numbers and L(n) = A000032(n) the Lucas numbers.
a(n) = L(n+1) + T(n+1) + Sum_{i=1.. n-2} L(i)*T(n-i), for L(n) = A000032(n) the Lucas numbers and T(n) = A000073(n) the tribonacci numbers.
G.f.: (1 + 3*x)/(1 - x - x^2 - x^3). - Stefano Spezia, Jul 14 2022
Comments