cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354183 Primes p such that p divides 2^((p-1)/x) - 1, where x is the greatest prime factor of p - 1.

Original entry on oeis.org

17, 109, 151, 241, 251, 257, 331, 433, 631, 641, 673, 683, 1321, 1429, 1459, 1613, 2917, 3191, 3457, 3889, 4733, 4861, 5153, 5419, 6337, 7001, 7351, 8581, 9719, 11119, 11251, 11471, 12101, 13367, 13553, 13669, 14323, 14449, 15121, 17539, 18503, 20231, 20857
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 18 2022

Keywords

Comments

Together with 3 and 5, supersequence of A023394.
Are there any odd integers k (k is not a SierpiƄski number) such that every prime of the form k*2^m + 1 (m >= 1) does not belong to the sequence?

Crossrefs

Cf. A023394.

Programs

  • Magma
    gpf:=func; [p: p in PrimesUpTo(20857) | Modexp(2, Truncate((p-1)/gpf(p-1)), p) eq 1];
    
  • Mathematica
    Select[Prime[Range[2500]], PowerMod[2, (# - 1)/FactorInteger[# - 1][[-1, 1]], #] == 1 &] (* Amiram Eldar, May 19 2022 *)
  • PARI
    isok(p) = if (isprime(p) && (p>2), my(x=vecmax(factor(p-1)[,1])); ((2^((p-1)/x) - 1) % p) == 0); \\ Michel Marcus, May 19 2022