cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354203 Fully multiplicative with a(p^e) = A354201(A000720(p))^e.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 7, 1, 5, 3, 2, 1, 13, 1, 11, 2, 3, 7, 19, 1, 4, 5, 1, 3, 17, 2, 23, 1, 7, 13, 6, 1, 29, 11, 5, 2, 37, 3, 31, 7, 2, 19, 43, 1, 9, 4, 13, 5, 41, 1, 14, 3, 11, 17, 47, 2, 53, 23, 3, 1, 10, 7, 59, 13, 19, 6, 67, 1, 61, 29, 4, 11, 21, 5, 71, 2, 1, 37, 79, 3, 26, 31, 17, 7, 73, 2, 15, 19, 23
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Left inverse of A354202.

Programs

  • PARI
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };

A354200 Prime map that sends 2 to 5, and each 4k+1 and 4k+3 prime to the next larger prime of the same type.

Original entry on oeis.org

5, 7, 13, 11, 19, 17, 29, 23, 31, 37, 43, 41, 53, 47, 59, 61, 67, 73, 71, 79, 89, 83, 103, 97, 101, 109, 107, 127, 113, 137, 131, 139, 149, 151, 157, 163, 173, 167, 179, 181, 191, 193, 199, 197, 229, 211, 223, 227, 239, 233, 241, 251, 257, 263, 269, 271, 277, 283, 281, 293, 307, 313, 311, 331, 317, 337, 347, 349, 359
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Examples

			A000040(2) = 3, and the next larger prime of the form 4k+3 is 7, therefore a(2) = 7.
A000040(3) = 5, and the next larger prime of the form 4k+1 is 13, therefore a(3) = 13.
A000040(4) = 7, and the next larger prime of the form 4k+3 is 11, therefore a(4) = 11.
		

Crossrefs

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));

Formula

For all n >= 1, A354201(A000720(a(n))) = A000040(n).

A354206 a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

Original entry on oeis.org

1, 1, 1, 23, 3, 1, 1, 5, 11, 3, 2, 23, 1, 1, 3, 469, 2, 11, 1, 69, 1, 2, 1, 5, 53, 1, 4, 23, 11, 3, 7, 69, 2, 2, 3, 253, 3, 1, 1, 15, 1, 1, 1, 46, 33, 1, 2, 469, 33, 53, 2, 23, 23, 4, 6, 5, 1, 11, 13, 69, 29, 7, 11, 19507, 3, 2, 1, 46, 1, 3, 2, 55, 2, 3, 53, 23, 2, 1, 3, 1407, 2797, 1, 5, 23, 6, 1, 11, 10, 9, 33
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Cf. A354361 (positions of 1's).
Cf. also A326042, A348750, A354088, A354096 for similar constructions.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };
    A354206(n) = A354203(sigma(A354202(n)));

Formula

Multiplicative with a(p^e) = A354203((q^(e+1)-1)/(q-1)) where q = A354200(A000720(p)).
a(n) = A354203(A354205(n)) = A354203(sigma(A354202(n))).
a(n) = n - A354207(n).

A354207 a(n) = n - A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

Original entry on oeis.org

0, 1, 2, -19, 2, 5, 6, 3, -2, 7, 9, -11, 12, 13, 12, -453, 15, 7, 18, -49, 20, 20, 22, 19, -28, 25, 23, 5, 18, 27, 24, -37, 31, 32, 32, -217, 34, 37, 38, 25, 40, 41, 42, -2, 12, 45, 45, -421, 16, -3, 49, 29, 30, 50, 49, 51, 56, 47, 46, -9, 32, 55, 52, -19443, 62, 64, 66, 22, 68, 67, 69, 17, 71, 71, 22, 53, 75, 77, 76
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };
    A354207(n) = (n-A354203(sigma(A354202(n))));

Formula

a(n) = n - A354206(n).
Showing 1-4 of 4 results.