A354226 a(n) is the number of distinct prime factors of (p^p - 1)/(p - 1) where p = prime(n).
1, 1, 2, 2, 2, 3, 3, 1, 4, 7, 1, 7, 5, 3, 3, 5, 3, 4, 6, 4, 10, 5, 4, 6, 6, 9, 5, 4, 5, 8, 6, 4, 11
Offset: 1
Examples
a(3)=2, since (5^5 - 1)/(5 - 1) = 11*71.
Links
- factordb, Status of (139^139 - 1)/138.
Programs
-
PARI
a(n) = my(p=prime(n)); omega((p^p-1)/(p-1)); \\ Michel Marcus, May 22 2022
-
Python
from sympy import factorint, prime def a(n): p = prime(n); return len(factorint((p**p-1)//(p-1))) print([a(n) for n in range(1, 12)]) # Michael S. Branicky, May 23 2022
Extensions
a(18)-a(33) from Amiram Eldar, May 20 2022
Comments