A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.
1, 2, 1, 3, 1, 1, 5, 3, 1, 1, 7, 4, 2, 1, 1, 11, 7, 4, 2, 1, 1, 15, 10, 6, 3, 2, 1, 1, 22, 16, 9, 6, 3, 2, 1, 1, 30, 22, 14, 8, 5, 3, 2, 1, 1, 42, 32, 20, 13, 8, 5, 3, 2, 1, 1, 56, 44, 29, 18, 12, 7, 5, 3, 2, 1, 1, 77, 62, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1
Examples
Triangle begins: 1 2 1 3 1 1 5 3 1 1 7 4 2 1 1 11 7 4 2 1 1 15 10 6 3 2 1 1 22 16 9 6 3 2 1 1 30 22 14 8 5 3 2 1 1 42 32 20 13 8 5 3 2 1 1 56 44 29 18 12 7 5 3 2 1 1 77 62 41 27 17 12 7 5 3 2 1 1 For example, row n = 5 counts the following partitions: (5) (32) (32) (41) (5) (32) (41) (311) (41) (221) (221) (2111) (311) (2111) (11111) At least one part appearing k or more times: (5) (221) (2111) (11111) (11111) (32) (311) (11111) (41) (2111) (221) (11111) (311) (2111) (11111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],MemberQ[#/k,_?IntegerQ]&]],{n,1,15},{k,1,n}] - or - Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]>=k&]],{n,1,15},{k,1,n}]
-
PARI
\\ here P(k,n) is partitions with no part divisible by k as g.f. P(k,n)={1/prod(i=1, n, 1 - if(i%k, x^i) + O(x*x^n))} M(n,m=n)={my(p=P(n+1,n)); Mat(vector(m, k, Col(p-P(k,n), -n) ))} { my(A=M(12)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Jan 19 2023
Comments