cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354240 Expansion of e.g.f. 1/sqrt(1 - 4 * log(1+x)).

Original entry on oeis.org

1, 2, 10, 88, 1080, 17088, 330528, 7558752, 199487136, 5967529152, 199533657792, 7374470138880, 298520508249600, 13135454575464960, 624240306760343040, 31864146725023718400, 1738698154646011499520, 100996114388088994007040
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/Sqrt[1-4Log[1+x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 04 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-4*log(1+x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*log(1+x)^k)))
    
  • PARI
    a(n) = sum(k=0, n, (2*k)!*stirling(n, k, 1)/k!);

Formula

E.g.f.: Sum_{k>=0} binomial(2*k,k) * log(1+x)^k.
a(n) = Sum_{k=0..n} (2*k)! * Stirling1(n,k)/k!.
a(n) ~ n^n / (sqrt(2) * (exp(1/4)-1)^(n + 1/2) * exp(n - 1/8)). - Vaclav Kotesovec, Jun 04 2022
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 11 2023

A354250 Expansion of e.g.f. Sum_{k>=0} (3*k)! * log(1+x)^k / k!.

Original entry on oeis.org

1, 6, 714, 360732, 476832204, 1302897016944, 6382799223892560, 50956720815425427360, 619019914356960664044960, 10866561174598537960652828160, 264763399994627082733034386813440, 8668743073576807048450006051943930880
Offset: 0

Views

Author

Seiichi Manyama, May 21 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (3*k)!*log(1+x)^k/k!)))
    
  • PARI
    a(n) = sum(k=0, n, (3*k)!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (3*k)! * Stirling1(n,k).
Showing 1-2 of 2 results.