cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354246 Indices of coefficients of x^(2*k-1) in Integral exp(-x*tan(x))/cos(x) dx at which the signs of the coefficients change: list of k such that sign(A354245(k)) != sign(A354245(k-1)), starting with 1.

Original entry on oeis.org

1, 2, 5, 10, 18, 29, 42, 57, 75, 95, 118, 143, 171, 201, 234, 269, 307, 347, 390, 435, 482, 532, 585, 639, 697, 757, 819, 884, 951, 1021, 1093, 1167, 1245, 1324, 1406, 1491, 1578, 1667, 1759, 1853, 1950, 2050, 2151, 2256, 2362, 2471, 2583, 2697, 2814, 2933, 3054, 3178, 3305, 3434, 3565, 3699, 3835, 3974, 4115, 4259, 4405, 4554, 4705, 4859
Offset: 1

Views

Author

Paul D. Hanna, May 20 2022

Keywords

Comments

The e.g.f. of A354245 is Integral exp(-x*tan(x))/cos(x) dx.
What is the limit of a(n)/n^2 ?
Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337... - Vaclav Kotesovec, May 26 2022

Examples

			The expansion of Integral exp(-x*tan(x)) / cos(x) dx = x - x^3/3! - 3*x^5/5! - 5*x^7/7! + 441*x^9/9! + 25911*x^11/11! + 1384757*x^13/13! + 74436531*x^15/15! + 3175224945*x^17/17! - 135369432209*x^19/19! + ... + A354245(n)*x^(2*n-1)/(2*n-1)! + ...
The signs (+-1) of the coefficients A354245 begin:
[+, -, -, -, +, +, +, +, +, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, ...].
This sequence gives the positions in A354245 at which the signs of the coefficients change.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A354245 = Table[(CoefficientList[Series[1/(E^(x*Tan[x])*Cos[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{1}, Select[Range[nmax], A354245[[#]]*A354245[[#-1]] < 0 &]] (* Vaclav Kotesovec, May 24 2022 *)

Extensions

a(39)-a(64) from Vaclav Kotesovec, May 26 2022