cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354245 E.g.f.: Integral exp(-x*tan(x)) / cos(x) dx.

Original entry on oeis.org

1, -1, -3, -5, 441, 25911, 1384757, 74436531, 3175224945, -135369432209, -89771310955155, -25527579751884693, -6567045994040209879, -1678101422880410465625, -427686430807976068014939, -102728760825086263958009309, -18156608776369804213731821343, 2585946334251026101959272934111
Offset: 1

Views

Author

Paul D. Hanna, May 20 2022

Keywords

Comments

The positions at which the signs of the terms change appear to be ~ c*n^2 (see example section).

Examples

			E.g.f.: A(x) = x - x^3/3! - 3*x^5/5! - 5*x^7/7! + 441*x^9/9! + 25911*x^11/11! + 1384757*x^13/13! + 74436531*x^15/15! + 3175224945*x^17/17! - 135369432209*x^19/19! + ...
where d/dx A(x) = exp(-x*tan(x)) / cos(x).
Also, e.g.f. A(x) equals the limit of the finite sum:
A(x) = lim_{N->oo} (x/N) * [1 + cos(2*x/N)/cos(x/N)^2 + cos(3*x/N)^2/cos(2*x/N)^3 + cos(4*x/N)^3/cos(3*x/N)^4 + cos(5*x/N)^4/cos(4*x/N)^5 + cos(6*x/N)^5/cos(5*x/N)^6 + ... + cos(x)^(N-1)/cos((N-1)*x/N)^N].
PATTERN OF SIGNS.
The signs (+-1) of the terms begin:
[+, -, -, -, +, +, +, +, +, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, ...].
The positions at which the signs of the terms change begin as follows:
[1, 2, 5, 10, 18, 29, 42, 57, 75, 95, 118, 143, 171, 201, 234, 269, 307, 347, 390, 435, 482, 532, 585, 639, 697, 757, 819, 884, 951, 1021, 1093, 1167, 1245, 1324, 1406, 1491, 1578, 1667, ..., A354246(n), ...]
which appears to be asymptotic to c*n^2 for some constant c ~ 1.2...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[1/(E^(x*Tan[x])*Cos[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}] (* Vaclav Kotesovec, May 24 2022 *)
  • PARI
    {a(n) = my(A = intformal( exp(-x * tan(x +O(x^(2*n+1))))/cos(x +O(x^(2*n+1)) ) )); (2*n-1)!*polcoeff(A,2*n-1)}
    for(n=1,20,print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)! may be defined by:
(1) A(x) = Integral exp(-x*tan(x)) / cos(x) dx.
(2) A(x) = lim_{N->oo} (x/N) * Sum_{n=1..N} cos((n+1)*x/N)^n / cos(n*x/N)^(n+1).

A354425 List of k such that sign(A009277(k)) = sign(A009277(k+1)).

Original entry on oeis.org

0, 2, 6, 10, 16, 22, 29, 37, 45, 54, 63, 73, 83, 93, 104, 116, 128, 140, 153, 166, 179, 193, 207, 221, 236, 251, 266, 282, 298, 314, 331, 347, 364, 382, 399, 417, 435, 454, 473, 491, 511, 530, 550, 570, 590, 610, 631, 652, 673, 694, 715, 737, 759, 781, 804, 826, 849, 872, 895, 919, 942, 966, 990
Offset: 1

Views

Author

Vaclav Kotesovec, May 27 2022, following a suggestion from Paul D. Hanna

Keywords

Comments

What is the limit of a(n) / n^(3/2) ?

Examples

			2 is in the sequence because A009277(2) = -4 and A009277(3) = -88 have the same sign.
6 is in the sequence because A009277(6) = 675776 and A009277(7) = 903834752 have the same sign.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A009277 = Table[(CoefficientList[Series[Exp[Tanh[x]^2], {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 3, 2*nmax, 2}]; Join[{0}, Select[Range[nmax-2], A009277[[#]]*A009277[[#+1]] > 0 &]]
    With[{nn=2000},SequencePosition[Sign[Take[CoefficientList[Series[Exp[Tanh[x]^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]],{x_,x_}]][[;;,1]]-1 (* Harvey P. Dale, Apr 08 2023 *)

A354399 List of k such that sign(A009273(k)) = sign(A009273(k+1)).

Original entry on oeis.org

0, 1, 5, 12, 21, 33, 47, 64, 83, 105, 129, 155, 184, 216, 250, 286, 325, 366, 410, 456, 505, 556, 610, 666, 725, 786, 849, 915, 984, 1055, 1128, 1204, 1282, 1363, 1446, 1532, 1620, 1711, 1804, 1900, 1998, 2098, 2201, 2307, 2415, 2525, 2638, 2753, 2871, 2991, 3114, 3239, 3367, 3497, 3630, 3765, 3903, 4043, 4185, 4330, 4477, 4627, 4780, 4935
Offset: 1

Views

Author

Vaclav Kotesovec, May 25 2022

Keywords

Comments

Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337...

Examples

			12 is in the sequence because A009273(12) = -454930757753597952 and A009273(13) = -94991612229069430784 have the same sign.
		

Crossrefs

Programs

  • Mathematica
    nmax = 400; A009273 = Table[(CoefficientList[Series[E^(x*Tanh[x]), {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{0}, Select[Range[nmax-1], A009273[[#]]*A009273[[#-1]] > 0 &] - 1]
Showing 1-3 of 3 results.