cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009273 Expansion of e.g.f. exp(x*tanh(x)) (even powers only).

Original entry on oeis.org

1, 2, 4, -24, 400, -5600, -103872, 26975872, -3438685952, 417995260416, -51382607559680, 5994623640856576, -454930757753597952, -94991612229069430784, 81515752167646959124480, -41079088828539119883878400, 18870487103065970636941754368, -8553231336572387307575081566208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[E^(x*Tanh[x]), {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}] (* Vaclav Kotesovec, May 24 2022 *)
    With[{nn=40},Take[CoefficientList[Series[Exp[x Tanh[x]],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 02 2025 *)
  • Maxima
    a(n):=sum(binomial(2*n,m)*sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n-m,k+m),k,0,2*n-2*m),m,0,2*n); /* Vladimir Kruchinin, Jun 06 2011 */

Formula

a(n) = Sum_(m=0..2*n, binomial(2*n,m)*Sum_(k=0..2*n-2*m, binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n-m,k+m))), n>0, a(0)=1. - Vladimir Kruchinin, Jun 06 2011

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
More terms from Vaclav Kotesovec, May 25 2022

A354425 List of k such that sign(A009277(k)) = sign(A009277(k+1)).

Original entry on oeis.org

0, 2, 6, 10, 16, 22, 29, 37, 45, 54, 63, 73, 83, 93, 104, 116, 128, 140, 153, 166, 179, 193, 207, 221, 236, 251, 266, 282, 298, 314, 331, 347, 364, 382, 399, 417, 435, 454, 473, 491, 511, 530, 550, 570, 590, 610, 631, 652, 673, 694, 715, 737, 759, 781, 804, 826, 849, 872, 895, 919, 942, 966, 990
Offset: 1

Views

Author

Vaclav Kotesovec, May 27 2022, following a suggestion from Paul D. Hanna

Keywords

Comments

What is the limit of a(n) / n^(3/2) ?

Examples

			2 is in the sequence because A009277(2) = -4 and A009277(3) = -88 have the same sign.
6 is in the sequence because A009277(6) = 675776 and A009277(7) = 903834752 have the same sign.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A009277 = Table[(CoefficientList[Series[Exp[Tanh[x]^2], {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 3, 2*nmax, 2}]; Join[{0}, Select[Range[nmax-2], A009277[[#]]*A009277[[#+1]] > 0 &]]
    With[{nn=2000},SequencePosition[Sign[Take[CoefficientList[Series[Exp[Tanh[x]^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]],{x_,x_}]][[;;,1]]-1 (* Harvey P. Dale, Apr 08 2023 *)

A354246 Indices of coefficients of x^(2*k-1) in Integral exp(-x*tan(x))/cos(x) dx at which the signs of the coefficients change: list of k such that sign(A354245(k)) != sign(A354245(k-1)), starting with 1.

Original entry on oeis.org

1, 2, 5, 10, 18, 29, 42, 57, 75, 95, 118, 143, 171, 201, 234, 269, 307, 347, 390, 435, 482, 532, 585, 639, 697, 757, 819, 884, 951, 1021, 1093, 1167, 1245, 1324, 1406, 1491, 1578, 1667, 1759, 1853, 1950, 2050, 2151, 2256, 2362, 2471, 2583, 2697, 2814, 2933, 3054, 3178, 3305, 3434, 3565, 3699, 3835, 3974, 4115, 4259, 4405, 4554, 4705, 4859
Offset: 1

Views

Author

Paul D. Hanna, May 20 2022

Keywords

Comments

The e.g.f. of A354245 is Integral exp(-x*tan(x))/cos(x) dx.
What is the limit of a(n)/n^2 ?
Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337... - Vaclav Kotesovec, May 26 2022

Examples

			The expansion of Integral exp(-x*tan(x)) / cos(x) dx = x - x^3/3! - 3*x^5/5! - 5*x^7/7! + 441*x^9/9! + 25911*x^11/11! + 1384757*x^13/13! + 74436531*x^15/15! + 3175224945*x^17/17! - 135369432209*x^19/19! + ... + A354245(n)*x^(2*n-1)/(2*n-1)! + ...
The signs (+-1) of the coefficients A354245 begin:
[+, -, -, -, +, +, +, +, +, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, ...].
This sequence gives the positions in A354245 at which the signs of the coefficients change.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A354245 = Table[(CoefficientList[Series[1/(E^(x*Tan[x])*Cos[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{1}, Select[Range[nmax], A354245[[#]]*A354245[[#-1]] < 0 &]] (* Vaclav Kotesovec, May 24 2022 *)

Extensions

a(39)-a(64) from Vaclav Kotesovec, May 26 2022
Showing 1-3 of 3 results.