cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354246 Indices of coefficients of x^(2*k-1) in Integral exp(-x*tan(x))/cos(x) dx at which the signs of the coefficients change: list of k such that sign(A354245(k)) != sign(A354245(k-1)), starting with 1.

Original entry on oeis.org

1, 2, 5, 10, 18, 29, 42, 57, 75, 95, 118, 143, 171, 201, 234, 269, 307, 347, 390, 435, 482, 532, 585, 639, 697, 757, 819, 884, 951, 1021, 1093, 1167, 1245, 1324, 1406, 1491, 1578, 1667, 1759, 1853, 1950, 2050, 2151, 2256, 2362, 2471, 2583, 2697, 2814, 2933, 3054, 3178, 3305, 3434, 3565, 3699, 3835, 3974, 4115, 4259, 4405, 4554, 4705, 4859
Offset: 1

Views

Author

Paul D. Hanna, May 20 2022

Keywords

Comments

The e.g.f. of A354245 is Integral exp(-x*tan(x))/cos(x) dx.
What is the limit of a(n)/n^2 ?
Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337... - Vaclav Kotesovec, May 26 2022

Examples

			The expansion of Integral exp(-x*tan(x)) / cos(x) dx = x - x^3/3! - 3*x^5/5! - 5*x^7/7! + 441*x^9/9! + 25911*x^11/11! + 1384757*x^13/13! + 74436531*x^15/15! + 3175224945*x^17/17! - 135369432209*x^19/19! + ... + A354245(n)*x^(2*n-1)/(2*n-1)! + ...
The signs (+-1) of the coefficients A354245 begin:
[+, -, -, -, +, +, +, +, +, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, ...].
This sequence gives the positions in A354245 at which the signs of the coefficients change.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A354245 = Table[(CoefficientList[Series[1/(E^(x*Tan[x])*Cos[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{1}, Select[Range[nmax], A354245[[#]]*A354245[[#-1]] < 0 &]] (* Vaclav Kotesovec, May 24 2022 *)

Extensions

a(39)-a(64) from Vaclav Kotesovec, May 26 2022

A354399 List of k such that sign(A009273(k)) = sign(A009273(k+1)).

Original entry on oeis.org

0, 1, 5, 12, 21, 33, 47, 64, 83, 105, 129, 155, 184, 216, 250, 286, 325, 366, 410, 456, 505, 556, 610, 666, 725, 786, 849, 915, 984, 1055, 1128, 1204, 1282, 1363, 1446, 1532, 1620, 1711, 1804, 1900, 1998, 2098, 2201, 2307, 2415, 2525, 2638, 2753, 2871, 2991, 3114, 3239, 3367, 3497, 3630, 3765, 3903, 4043, 4185, 4330, 4477, 4627, 4780, 4935
Offset: 1

Views

Author

Vaclav Kotesovec, May 25 2022

Keywords

Comments

Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337...

Examples

			12 is in the sequence because A009273(12) = -454930757753597952 and A009273(13) = -94991612229069430784 have the same sign.
		

Crossrefs

Programs

  • Mathematica
    nmax = 400; A009273 = Table[(CoefficientList[Series[E^(x*Tanh[x]), {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{0}, Select[Range[nmax-1], A009273[[#]]*A009273[[#-1]] > 0 &] - 1]

A009277 E.g.f. exp(tanh(x)^2) (even powers only).

Original entry on oeis.org

1, 2, -4, -88, 4496, -155488, 675776, 903834752, -178181918464, 26154843525632, -2632795710260224, -207121926659381248, 274561534481040183296, -132684091405061956722688, 50873850498309673207709696
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Exp[Tanh[x]^2], {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}] (* Vaclav Kotesovec, May 27 2022 *)
    With[{nn=30},Take[CoefficientList[Series[Exp[Tanh[x]^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 08 2023 *)
  • Maxima
    a(n):=sum(sum(binomial(k+2*m-1,2*m-1)*(k+2*m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n,k+2*m),k,0,2*n-2*m)/m!,m,1,n); /* Vladimir Kruchinin, Jun 06 2011 */
    
  • PARI
    x = 'x + O(x^50); select(x->x, Vec(serlaplace(exp(tanh(x)^2)))) \\ Michel Marcus, Apr 01 2017

Formula

a(n) = Sum_{m=1..n} (Sum_{k=0..2*n-2*m} (binomial(k+2*m-1, 2*m-1)*(k+2*m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n, k+2*m))/m!). - Vladimir Kruchinin, Jun 06 2011

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Showing 1-3 of 3 results.