cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354311 Expansion of e.g.f. exp( x/2 * (exp(2 * x) - 1) ).

Original entry on oeis.org

1, 0, 2, 6, 28, 160, 1056, 7784, 63568, 569664, 5542240, 58038112, 650045760, 7746901760, 97790608384, 1302349549440, 18235836899584, 267663541270528, 4107395264113152, 65739857693144576, 1095095457262013440, 18949711553467957248, 340036076121127395328
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/2*(exp(2*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-2)*binomial(i-1, j-1)*v[i-j+1])); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*stirling(n-k, k, 2)/(n-k)!);

Formula

a(0) = 1; a(n) = Sum_{k=2..n} k * 2^(k-2) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-2*k) * Stirling2(n-k,k)/(n-k)!.

A354314 Expansion of e.g.f. 1/(1 - x/3 * (exp(3 * x) - 1)).

Original entry on oeis.org

1, 0, 2, 9, 60, 495, 4986, 58401, 780984, 11749779, 196446870, 3612882933, 72484364052, 1575418827879, 36875093680530, 924769734574185, 24737895033896304, 703105981990977915, 21159355356941587470, 672148402091190649629, 22475238194908656800460
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/3*(exp(3*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*3^(j-2)*binomial(i, j)*v[i-j+1])); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*stirling(n-k, k, 2)/(n-k)!);

Formula

a(0) = 1; a(n) = Sum_{k=2..n} k * 3^(k-2) * binomial(n,k) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * k! * Stirling2(n-k,k)/(n-k)!.
Showing 1-2 of 2 results.