A354343 Number of distinct sums of n complex 6th power roots of unity.
1, 6, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769, 7057, 7351, 7651, 7957
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{1,6,19,37,61},60] (* Harvey P. Dale, Nov 03 2024 *)
-
PARI
a(n)=if(n==1, 6, 3*n*(n+1)+1) \\ Charles R Greathouse IV, Aug 15 2022
Formula
For n >= 2, a(n) = 3*n^2 + 3*n + 1 = A003215(n).
For n >= 5, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f. (1 + 3*x + 4*x^2 - 3*x^3 + x^4) / (1 - x)^3.