A354357 Numbers k, not divisible by 2 or 3, such that sigma(k) is 3-smooth (has no larger prime factors than 3).
1, 5, 7, 11, 17, 23, 31, 35, 47, 53, 55, 71, 77, 85, 107, 115, 119, 127, 155, 161, 187, 191, 217, 235, 253, 265, 329, 341, 355, 371, 383, 385, 391, 431, 497, 517, 527, 535, 583, 595, 635, 647, 713, 749, 781, 799, 805, 863, 889, 901, 935, 955, 971, 1081, 1085, 1151, 1177, 1207, 1219, 1265, 1309, 1337, 1397, 1457, 1633
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Flatten @ Outer[Plus, 6 * Range[0, 300], {1, 5}], Max @ FactorInteger[DivisorSigma[1, #]][[;;, 1]] <= 3 &] (* Amiram Eldar, May 25 2022 *) Select[Range[1,1701,2],Mod[#,3]!=0&&Max[FactorInteger[DivisorSigma[1,#]][[;;,1]]]<4&] (* Harvey P. Dale, Dec 17 2023 *)
-
PARI
A065333(n) = ((3^valuation(n, 3)<
A065333 A354355(n) = A065333(sigma(n)); isA354357(n) = ((n%2)&&(n%3)&&A354355(n));