cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354363 a(n) = LCM_{p^e||n} (q^(e+1)-1)/(q-1), when n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n, and q = nextPrime(p).

Original entry on oeis.org

1, 4, 6, 13, 8, 12, 12, 40, 31, 8, 14, 78, 18, 12, 24, 121, 20, 124, 24, 104, 12, 28, 30, 120, 57, 36, 156, 156, 32, 24, 38, 364, 42, 20, 24, 403, 42, 24, 18, 40, 44, 12, 48, 182, 248, 60, 54, 726, 133, 228, 60, 234, 60, 156, 56, 120, 24, 32, 62, 312, 68, 76, 372, 1093, 72, 84, 72, 260, 30, 24, 74, 1240, 80, 84
Offset: 1

Views

Author

Antti Karttunen, May 30 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };
    A354363(n) = A353783(A003961(n));
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A354363(n) = { my(f=factor(n)~); lcm(vector(#f, i, A003973(f[1, i]^f[2, i]))); };

Formula

a(n) = LCM_{p^e||n} A003973(p^e), when n = Product_{p^e||n}.
a(n) = A353783(A003961(n)).
a(n) = A003973(n) / A354364(n).