A052862
Expansion of e.g.f. log(-1/(-2+exp(x)))*x.
Original entry on oeis.org
0, 0, 2, 6, 24, 130, 900, 7574, 74928, 851274, 10916700, 155919742, 2453941512, 42188446898, 786563892660, 15805750451430, 340522975054176, 7829628493247002, 191363568551328780, 4954089147107164238
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(C),C=Set(Z,1 <= card),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*((i+r)^(n-r)/(i!*(k-i-r)!)), {i, 0, k-r}], {k, r, n}];
Fubini[0, 1] = 1;
a[n_] := If[n == 2, 2, 2 n * Fubini[n-2, 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 11 2022 *)
-
my(x='x+O('x^25)); concat([0,0],Vec(serlaplace(log(-1/(-2+exp(x)))*x))) \\ Joerg Arndt, Oct 11 2022
A354412
Expansion of e.g.f. 1/(2 - exp(x))^(x/2).
Original entry on oeis.org
1, 0, 1, 3, 15, 95, 735, 6727, 71169, 854919, 11497845, 171179261, 2795081751, 49668211177, 954226247247, 19709181213555, 435524370171393, 10252531220906051, 256148413939459917, 6769302493147288885, 188664988853982963735, 5530544750788380455433
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(2-Exp[x])^(x/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 12 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x))^(x/2)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, (k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])/2); v;
A367486
Expansion of e.g.f. 1/(3 - 2*exp(x))^x.
Original entry on oeis.org
1, 0, 4, 18, 168, 1830, 24540, 388122, 7084560, 146650446, 3395460900, 86962122786, 2441210321880, 74542218945558, 2459830123779756, 87236196407090730, 3308881779086345760, 133667058288336876894, 5729380391745420070068
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 2^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
A367488
Expansion of e.g.f. 1/(4 - 3*exp(x))^x.
Original entry on oeis.org
1, 0, 6, 36, 444, 6540, 119520, 2593164, 65233392, 1867289868, 59939612040, 2132540249532, 83293357351248, 3543242182036284, 163062595422642552, 8071964230348189260, 427682380939864204224, 24149065480351703398572, 1447640087400503974386504
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 3^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
A354421
Expansion of e.g.f. (2 - exp(x))^x.
Original entry on oeis.org
1, 0, -2, -6, -12, -10, 60, 406, 672, -18666, -400740, -6617842, -108686952, -1883464466, -34930602252, -693981413610, -14732243810016, -333084114060442, -7994768036250132, -203102355108133154, -5445884954606704920, -153726156157794541986
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((2-exp(x))^x))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, j*sum(k=1, j-1, (k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
Showing 1-5 of 5 results.
Comments