A354433 a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.
1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 2, 1, 14, 15, 16, 1, 3, 1, 5, 21, 22, 1, 3, 25, 26, 27, 14, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 20, 1, 42, 1, 22, 5, 46, 1, 4, 49, 25, 51, 13, 1, 18, 55, 2, 57, 58, 1, 30, 1, 62, 63, 64, 65, 66, 1, 17, 69, 14, 1, 8, 1, 74, 25
Offset: 1
Examples
1, 1, 1, 5/4, 1, 7/6, 1, 11/8, 10/9, 11/10, 1, 3/2, 1, 15/14, 16/15, 23/16, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Table[DivisorSum[n, 1/# &, !PrimeQ[#] &], {n, 75}] // Denominator
-
PARI
a(n) = denominator(sumdiv(n, d, if(!isprime(d), 1/d))) \\ Michael S. Branicky, May 28 2022
-
Python
from fractions import Fraction from sympy import divisors, isprime def a(n): return sum(Fraction(1, d) for d in divisors(n, generator=True) if not isprime(d)).denominator print([a(n) for n in range(1, 76)]) # Michael S. Branicky, May 28 2022
-
Python
from math import prod from fractions import Fraction from sympy import factorint def A354433(n): f = factorint(n) return (Fraction(prod(p**(e+1)-1 for p, e in f.items()),prod(p-1 for p in f)*n) - sum(Fraction(1,p) for p in f)).denominator # Chai Wah Wu, May 28 2022
Formula
a(p) = 1 for prime p. - Michael S. Branicky, May 28 2022