A354490 T(w,h) with 2 <= h <= w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at integer coordinates, where T(w,h) is a triangle read by rows.
0, 0, 0, 0, 1, 0, 1, 3, 1, 0, 0, 3, 3, 4, 4, 3, 6, 6, 6, 12, 0, 2, 6, 7, 9, 15, 13, 6, 6, 10, 12, 12, 30, 18, 27, 8, 4, 11, 11, 12, 24, 25, 33, 41, 18, 10, 17, 21, 17, 36, 24, 35, 32, 38, 0, 8, 17, 19, 21, 51, 43, 65, 84, 87, 57, 62, 15, 24, 31, 25, 49, 31, 48, 45, 53, 33, 76, 0
Offset: 2
Examples
The triangle begins, with corresponding terms of A353532 shown in parenthesis: \ d 2 3 4 5 6 7 8 9 w \--------------------------------------------------------------------- 2 | 0 ( 0) | | | | | | | 3 | 0 ( 0) 0 ( 0) | | | | | | 4 | 0 ( 0) 1 ( 3) 0 ( 1) | | | | | 5 | 1 ( 1) 3 ( 7) 1 ( 12) 0 ( 11) | | | | 6 | 0 ( 1) 3 (11) 3 ( 26) 4 ( 52) 4 ( 40) | | | 7 | 3 ( 4) 6 (23) 6 ( 50) 6 ( 94) 12 (147) 0 (105) | | 8 | 2 ( 4) 6 (30) 7 ( 69) 9 (127) 15 (198) 13 (301) 6 (190) | 9 | 6 (10) 10 (49) 12 (103) 12 (192) 30 (302) 18 (444) 27 (583) 8 (379) . Only 1 = T(4,3) of the 3 = T_a353532(5,4) quadrilaterals has diagonals AC, BD whose intersection point S has integer coordinates: . 3 | . C . . . 3 | . C . . . 3 | . . C . . 2 | . . . . . 2 | . . . . B 2 | . . . . B 1 | D S . . B 1 | D . . . . 1 | D . . . . 0 | . A . . . 0 | . A . . . 0 | . A . . . y /---------- y /---------- y /---------- x 0 1 2 3 4 x 0 1 2 3 4 x 0 1 2 3 4 S=(1,1) S=(1,5/4) S=(16/11,15/11) . T(5,2) = T_a353532(6,3) = 1: . 2 | . . . C . . 1 | D . S . . B 0 | . A . . . . y /------------ x 0 1 2 3 4 5 S=(2,1) . T(5,3) = 3 of the T_a353532(6,4) = 7 intersection points S of the diagonals AC, BD have integer coordinates: . 3 | . C . . . . 3 | . C . . . . 3 | . . C . . . 3 | . . . C . . 2 | . . . . . . 2 | . . . . . B 2 | . . . . . . 2 | D . . . . . 1 | D S . . . B 1 | D . . . . . 1 | D . . . . B 1 | . . . . . B 0 | . A . . . . 0 | . A . . . . 0 | . A . . . . 0 | . A . . . . y /------------ y /------------ y /------------ y /------------ x 0 1 2 3 4 5 x 0 1 2 3 4 5 x 0 1 2 3 4 5 x 0 1 2 3 4 5 S=(1,1) S=(1,6/5) S=(4/3,1) S=(35/17,27/17) . 3 | . . . . C . 3 | . . C . . . 3 | . . C . . . 2 | . . . . . . 2 | . . . . . . 2 | . . . . . B 1 | D . S . . B 1 | D . S . . B 1 | D . . . . . 0 | . A . . . . 0 | . . A . . . 0 | . . A . . . y /------------ y /------------ y /------------ x 0 1 2 3 4 5 x 0 1 2 3 4 5 x 0 1 2 3 4 5 S=(2,1) S=(2,1) S=(2,7/5)
Links
- Hugo Pfoertner, PARI program to print sequence terms.
Programs
-
PARI
\\ See link. The program a354490 (w1, w2) prints the terms for the rows w1 .. w2. An auxiliary function sinter is defined to determine the rational intersection point of the diagonals.
Comments