A354702
T(w,h) is an upper bound for the minimum number of grid points in a square grid covered by an arbitrarily positioned and rotated rectangle of width w and height h, where T(w,h) is a triangle read by rows.
Original entry on oeis.org
0, 1, 2, 2, 4, 7, 2, 5, 9, 12, 3, 7, 13, 17, 21, 4, 8, 15, 20, 26, 32, 4, 9, 18, 22, 31, 36, 40, 5, 11, 20, 27, 36, 44, 49, 57, 6, 12, 24, 30, 41, 48, 54, 66, 72, 7, 14, 26, 35, 46, 55, 63, 74, 84, 96, 7, 15, 28, 37, 50, 60, 67, 81, 90, 105, 112, 8, 16, 31, 40, 55, 64, 72, 88, 96, 112, 120, 128
Offset: 1
The triangle begins:
\ h 1 2 3 4 5 6 7 8 9 10 11 12
w \ -------------------------------------------------
1 | 0; | | | | | | | | | | |
2 | 1, 2; | | | | | | | | | |
3 | 2, 4, 7; | | | | | | | | |
4 | 2, 5, 9, 12; | | | | | | | |
5 | 3, 7, 13, 17, 21; | | | | | | |
6 | 4, 8, 15, 20, 26, 32; | | | | | |
7 | 4, 9, 18, 22, 31, 36, 40; | | | | |
8 | 5, 11, 20, 27, 36, 44, 49, 57; | | | |
9 | 6, 12, 24, 30, 41, 48, 54, 66, 72; | | |
10 | 7, 14, 26, 35, 46, 55, 63, 74, 84, 96; | |
11 | 7, 15, 28, 37, 50, 60, 67, 81, 90, 105, 112; |
12 | 8, 16, 31, 40, 55, 64, 72, 88, 96, 112, 120, 128
Cf.
A291259 (similar problem for circular disks).
Cf.
A000404 (used to check extreme positions of grid points).
A354703
T(w,h) = w*h - A354702(w,h) is a lower bound on the gain in the number of not covered grid points from an optimally positioned and rotated cover versus a just translated cover, where T(w,h) and A354702 are triangles read by rows.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 2, 3, 3, 4, 2, 3, 2, 3, 4, 2, 4, 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 9, 3, 5, 4, 5, 4, 4, 7, 7, 3, 6, 3, 6, 4, 6, 9, 6, 9, 3, 6, 4, 5, 4, 5, 7, 6, 6, 4, 4, 7, 5, 7, 5, 6, 10, 7, 9, 5, 9, 4, 8, 5, 8, 5, 8, 12, 8, 12, 8, 12, 16, 4, 8, 5, 7, 4, 6, 10, 6, 9, 4, 8, 12, 7
Offset: 1
The triangle begins:
\ h 1 2 3 4 5 6 7 8 9 10 11 12 13
w \ ------------------------------------------
1 | 1; | | | | | | | | | | | |
2 | 1, 2; | | | | | | | | | | |
3 | 1, 2, 2; | | | | | | | | | |
4 | 2, 3, 3, 4; | | | | | | | | |
5 | 2, 3, 2, 3, 4; | | | | | | | |
6 | 2, 4, 3, 4, 4, 4; | | | | | | |
7 | 3, 5, 3, 6, 4, 6, 9; | | | | | |
8 | 3, 5, 4, 5, 4, 4, 7, 7; | | | | |
9 | 3, 6, 3, 6, 4, 6, 9, 6, 9; | | | |
10 | 3, 6, 4, 5, 4, 5, 7, 6, 6, 4; | | |
11 | 4, 7, 5, 7, 5, 6, 10, 7, 9, 5, 9; | |
12 | 4, 8, 5, 8, 5, 8, 12, 8, 12, 8, 12, 16; |
13 | 4, 8, 5, 7, 4, 6, 10, 6, 9, 4, 8, 12, 7
.
T(4,3) = 3, because the optimally positioned and rotated 4 X 3 rectangle
covers A354702(4,3) = 9 grid points, whereas a translated, but unrotated 4 X 3 rectangle covers 4*3 = 12 grid points. 4*3 - 9 = 3.
+ . . . . + . . . . + . . . . + . . . . + . . . . + . . . . +
. . . . . . .
. . . . . . .
. . . . O . . .
. . . . ~ \. . .
+ . . . . + . . . . + . . . . o . . . . \ . . . . + . . . . +
. . . . .\ . .
. . . ~ . . o . .
. . o . . \ . .
. . ~ . . . \ . .
+ . . . . + o . . . 1 . . . . 2 . . . . 3 . .\. . + . . . . +
. ~ . . . . \ . .
. O . . . . o . .
. \ . . . . \ . .
. \ . . . . \. .
+ . .\. . 4 . . . . 5 . . . . 6 . . . . 7 . . . . \ . . . . +
. o . . . . .\ .
. \ . . . . . O .
. \ . . . . ~ . .
. \. . . . o . .
+ . . . . \ . . . . 8 . . . . 9 . . . . + . . . . + . . . . +
. .o . . ~ . . .
. . \ . . o . . .
. . \ . ~ . . . .
. . \ . o . . . .
+ . . . . + . .\. . ~ . . . . + . . . . + . . . . + . . . . +
. . O . . . . .
. . . . . .
. O---------o---------o---------o---------O .
. | . . . . | .
+ . . | . 1 . . . . 2 . . . . 3 . . . . 4 . . | . +
. | . . . . | .
. | . . . . | .
. o . . . . o .
. | . . . . | .
+ . . | . 5 . . . . 6 . . . . 7 . . . . 8 . . | . +
. | . . . . | .
. | . . . . | .
. o . . . . o .
. | . . . . | .
+ . . | . 9 . . . .10 . . . .11 . . . .12 . . | . +
. | . . . . | .
. | . . . . | .
. O---------o---------o---------o---------O .
. . . . . .
+ . . . . + . . . . + . . . . + . . . . + . . . . +
Cf.
A354704,
A354705 (similar, but for maximizing the number of covered points).
Original entry on oeis.org
2, 4, 3, 7, 4, 8, 11, 9, 11, 8, 16, 20, 15, 20, 14, 24, 11, 23, 27, 20, 34, 17, 31, 41, 28, 32
Offset: 1
A354492 is the analogous sequence, but for the problem of minimizing the number of grid points covered.
Showing 1-3 of 3 results.
Comments