A354531 Numbers k such that 2*(2^k-1) is in A354525.
1, 2, 3, 5, 7, 9, 13, 17, 19, 31, 61, 67, 89, 107, 127, 137, 521, 607, 727
Offset: 1
Examples
See A354532.
Programs
-
PARI
gpf(n) = vecmax(factor(n)[, 1]); ispsmooth(n,p,{lim=1<<256}) = if(n<=lim, n==1 || gpf(n)<=p, my(N=n/p^valuation(n,p)); forprime(q=2, p, N=N/q^valuation(N,q); if((N<=lim && isprime(N)) || N==1, return(N<=p))); 0); \\ check if n is p-smooth, using brute force if n is too large isA354531(n,{lim=256},{p_lim=1<<32}) = { my(N=2^n-1); if(isprime(N), return(1)); if(n>lim, forprime(p=3, p_lim, if(N%p==0 && !ispsmooth(2*N+p,p), return(0)))); \\ first check if there is a prime factor p <= p_lim of 2^n-1 such that 2*(2^n-1)+p is not p-smooth (for large n) my(d=divisors(n)); for(i=1, #d, my(f=factor(2^d[i]-1)[, 1]); for(j=1, #f, if(!ispsmooth(2*N+f[j],f[j],1<
Extensions
a(17)-a(19) from Jinyuan Wang, Jan 21 2025
Comments