cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354550 Expansion of e.g.f. exp( x * exp(x^2/2) ).

Original entry on oeis.org

1, 1, 1, 4, 13, 46, 241, 1156, 6889, 44668, 300241, 2328976, 18390901, 159273544, 1461200833, 13995753136, 144068872081, 1531949061136, 17259159775969, 202543867724608, 2474236899786781, 31633380519660256, 417760492214548561, 5751414293905728064
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x Exp[x^2/2]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 03 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^2/2)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(2^k*k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(2^k * k! * (n - 2*k)!).

A354551 Expansion of e.g.f. exp( x * exp(x^3/6) ).

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 61, 211, 1401, 8065, 37241, 240021, 1997821, 13856701, 94418325, 874328911, 8304303281, 69158458881, 658339599601, 7454839614985, 78224066633781, 805961931388741, 9828080719704941, 124199805022959051, 1466207770078872745
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Comments

This sequence is different from A143567.

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x*Exp[x^3/6]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 03 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^3/6)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(6^k*k!*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * k! * (n - 3*k)!).

A356608 a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(24^k * (n - 4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 1261, 13861, 106261, 558361, 2709136, 32802771, 447762316, 4093711441, 28011714641, 293624974441, 5549250905281, 80454378591121, 815886496908946, 8379058314620071, 168672787637953446, 3514729162490432041, 51656083670790267901
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 4*k)^k/(24^k*(n - 4*k)!), {k, 0, Floor[n/4]}]; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, (n-4*k)^k/(24^k*(n-4*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^4/24)))))

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x^4/24)).
Showing 1-3 of 3 results.