A354580 Number of rucksack compositions of n: every distinct partial run has a different sum.
1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 12 compositions: () (1) (2) (3) (4) (5) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (1,1,1) (3,1) (3,2) (1,2,1) (4,1) (1,1,1,1) (1,1,3) (1,2,2) (1,3,1) (2,1,2) (2,2,1) (3,1,1) (1,1,1,1,1)
Links
- Max Alekseyev, Table of n, a(n) for n = 0..65
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]
Extensions
Terms a(16) onward from Max Alekseyev, Sep 10 2023
Comments