A354591 Numbers k that can be written as the sum of 4 divisors of k (not necessarily distinct).
4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 100, 102, 104, 108, 110, 112, 114, 116, 120, 124, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 170, 172
Offset: 1
Keywords
Examples
20 is in the sequence since 20 = 10+5+4+1 = 5+5+5+5 where each summand divides 20.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1).
Crossrefs
Programs
-
Maple
F:= proc(x,S,j) option remember; local s,k; if j = 0 then return(x = 0) fi; if S = [] or x > j*S[-1] then return false fi; s:= S[-1]; for k from 0 to min(j,floor(x/s)) do if procname(x-k*s, S[1..-2],j-k) then return true fi od; false end proc: select(t -> F(t, sort(convert(numtheory:-divisors(t),list)),4), [$1..200]); # Robert Israel, Aug 31 2022
-
Mathematica
q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[200], q[#, 4] &] (* Amiram Eldar, Aug 19 2022 *) CoefficientList[Series[2 (2 - x + 2*x^2 - x^3 + 2*x^4 + x^6 + 2*x^8 + x^10 + 2*x^12 + x^14 + 2*x^16 - x^17 + 2*x^18 - x^19 + 2*x^20)/((x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(1 + x + x^5 + x^6 + x^7 + x^8 + x^9 + x^2 + x^4 + x^3 + x^10)*(x - 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
-
PARI
isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [4,4]); \\ Michel Marcus, Aug 19 2022
Formula
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) - 2*a(n-14) + 2*a(n-15) - 2*a(n-16) + 2*a(n-17) - 2*a(n-18) + 2*a(n-19) - 2*a(n-20) + 2*a(n-21) - a(n-22). - Wesley Ivan Hurt, Jun 29 2024
G.f.: 2*x*(2 - x + 2*x^2 - x^3 + 2*x^4 + x^6 + 2*x^8 + x^10 + 2*x^12 + x^14 + 2*x^16 - x^17 + 2*x^18 - x^19 + 2*x^20)/((x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(1 + x + x^5 + x^6 + x^7 + x^8 + x^9 + x^2 + x^4 + x^3 + x^10)*(x - 1)^2). - Wesley Ivan Hurt, Jul 17 2025
Comments