cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354594 a(n) = n^2 + 2*floor(n/2)^2.

Original entry on oeis.org

0, 1, 6, 11, 24, 33, 54, 67, 96, 113, 150, 171, 216, 241, 294, 323, 384, 417, 486, 523, 600, 641, 726, 771, 864, 913, 1014, 1067, 1176, 1233, 1350, 1411, 1536, 1601, 1734, 1803, 1944, 2017, 2166, 2243, 2400, 2481, 2646, 2731, 2904
Offset: 0

Views

Author

David Lovler, Jun 01 2022

Keywords

Comments

The first bisection is A033581, the second bisection is A080859. - Bernard Schott, Jun 07 2022

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 + 2 Floor[n/2]^2
    Table[a[n], {n, 0, 90}]    (* A354594 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 6, 11, 24}, 60]
  • PARI
    a(n) = n^2 + 2*(n\2)^2;

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n >= 5.
a(n) = A000290(n) + 2*A008794(n).
G.f.: x*(1 + 5*x + 3*x^2 + 3*x^3)/((1 - x)^3*(1 + x)^2).
E.g.f.: (x*(1 + 3*x)*cosh(x) + (1 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jun 07 2022