cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354600 a(n) = Product_{k=0..9} floor((n+k)/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1536, 2304, 3456, 5184, 7776, 11664, 17496, 26244, 39366, 59049, 78732, 104976, 139968, 186624, 248832, 331776, 442368, 589824, 786432, 1048576, 1310720, 1638400, 2048000, 2560000, 3200000, 4000000
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 08 2022

Keywords

Comments

For n >= 10, a(n) is the maximal product of ten positive integers with sum n.

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), this sequence (k=10).
Cf. A008454 (subsequence), A013668.

Programs

  • Mathematica
    Table[Product[Floor[(n + k)/10], {k, 0, 9}], {n, 0, 50}]
  • PARI
    a(n) = prod(k=0, 9, (n+k)\10); \\ Michel Marcus, Jul 09 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + 9*a(n-10) - 18*a(n-11) + 9*a(n-12) - 36*a(n-20) + 72*a(n-21) - 36*a(n-22) + 84*a(n-30) - 168*a(n-31) + 84*a(n-32) - 126*a(n-40) + 252*a(n-41) - 126*a(n-42) + 126*a(n-50) - 252*a(n-51) + 126*a(n-52) - 84*a(n-60) + 168*a(n-61) - 84*a(n-62) + 36*a(n-70) - 72*a(n-71) + 36*a(n-72) - 9*a(n-80) + 18*a(n-81) - 9*a(n-82) + a(n-90) - 2*a(n-91) + a(n-92).
Sum_{n>=10} 1/a(n) = 1 + zeta(10). - Amiram Eldar, Jan 10 2023
a(10*n) = n^10 (A008454). - Bernard Schott, Feb 02 2023